Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2^2 + 2^2 + ... + 2^2020
=> 2S = 2 . ( 1 + 2 + 2^2 + ... + 2^2020)
=> 2S = 2 + 2^2 + 2^3 + ....+ 2^2021
=> 2S - S = 2 + 2^2 + 2^3+ ...+ 2^2021 - 1 -2 -2^2 - ... - 2^2020
=> S = 2^2021 - 1
\(M=1-2+3-4+5-6+...+2019-2020\)
\(\Rightarrow M=-1+\left(-1\right)+\left(-1\right)+...\left(-1\right)\)
\(\Rightarrow M=\left(-1\right).1010=-1010\)
M= 1-2+3-4+5-6+...+2019-2020
M= (-1)+(-1)+(-1)+...+(-1)
Tổng số cặp số có ở trên là:
2020:2=1010
M=(-1).1010
M=(-1010)
1. A = 2 + 22 + 23 + 24 +...+22019
2A= 2( 2 + 22 + 23 + 24 +...+22019)
2A= 22 + 23 + 24 +...+22019+22020
2A-A= (22 + 23 + 24 +...+22019+22020) - ( 2 + 22 + 23 + 24 +...+22019)
A= 22020-2
Vì 22020=22020 nên 22020-2 < 22020
=> A < B
Vậy..
Ta có:
\(2A=2^2+2^3+2^4+2^5+...+2^{2020}\)
\(\Leftrightarrow2A-A=\left(2^2+2^3+2^4+...+2^{2020}\right)-\left(2+2^2+2^3+....+2^{2019}\right)\)
\(\Leftrightarrow A=2^{2020}-2\)
\(\Rightarrow A< B\)
a) 125x57+27x5^4+5^2x40
=5^3x57+27x5^4+5^2x40
=5^2x(5x57+27x5^2+40)
=25x1000
=25000
â,Đặt A là tên bthuc
A\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+2020\left(2021-1\right)\)
\(=\left(1.2+2.3+3.4+...+2020.2021\right)-\left(1+2+3+...+2020\right)\)
Đặt B = 1.2+2.3+...+2020.2021
\(3B=1.2.3+2.3.3+...+2020.2021.3\)
=\(1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+2020.2021.\left(2022-2019\right)\)
\(=\left(1.2.3+2.3.4+...+2020.2021.2022\right)-\left(0.1.2+1.2.3+...+2019.2020.2021\right)\)
\(=2020.2021.2022-0.1.2=2020.2021.2022\)
=>\(B=\frac{2020.2021.2022}{3}\)
=>\(A=\frac{2020.2021.2022}{3}-\frac{2020.2021}{2}=2020.2021\left(\frac{2022}{3}-\frac{1}{2}\right)=\frac{2020.2021.4041}{6}\)
b,Đặt tên bthuc là M
Ta có: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
=> \(1^3-1=0.1.2\)
\(2^3=1.2.3\)
.......
\(2020^3-2020=2019.2020.2021\)
=> \(M=0.1.2+1.2.3+2.3.4+...+2019.2020.2021+\left(1+2+...2020\right)\)
Đặt N=1.2.3+2.3.4+...+2019.2020.2021
\(4N=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+...+2019.2020.2021\left(2022-2018\right)\)
=\(\left(1.2.3.4+2.3.4.5+...+2019.2020.2021.2022\right)\)-\(\left(0.1.2.3+1.2.3.4+...+2018.2019.2020.2021\right)\)
\(=2019.2020.2021.2022-0.1.2.3=2019.2020.2021.2022\)
=>\(N=\frac{2019.2020.2021.2022}{4}\)
=>\(M=\frac{2019.2020.2021.2022}{4}+\frac{2020.2021}{2}=\frac{2019.2020.2021.2022+2.2020.2021}{4}\)
\(=\frac{2020.2021\left(2019.2022+2\right)}{4}=\frac{2020.2021.\left(2019.2022-2019+2022-1\right)}{4}\)
\(=\frac{2020.2021.\left(2019+1\right)\left(2022-1\right)}{4}=\frac{2020^2.2021^2}{4}=\left(1010.2021\right)^2\)
em chịu khó gõ link này lên google nhé em !
https://olm.vn/hoi-dap/detail/97680351557.html
học tốt nha
D=12-22+32-42+...+992-1002+1012
D = - (-12 + 22 - 32 + 42 - ... - 992 + 1002) + 1012
D = -[(22 - 12) + (42 - 32) + ... + (1002 - 992)] + 1012
D = -[(2 + 1)(2 - 1) + (4 + 3)(4 - 3) + ... + (100 + 99)(100 - 99)] + 1012
D = -[1 + 2 + 3 + 4 + ... + 99 + 100] + 1012
D = \(-\frac{\left(1+100\right).100}{2}+101^2\)
D = -5050 + 10201
D = 5151
S=1+22+23+...+22020
2S= 22+23+24+...+22021
2S - S = S = (22- 22) + (23-23)+ (24- 24)+...+(22020-22020) + (22021-1)
= 22021 - 1
\(S=1+2^2+2^3+...+2^{2020}\)
\(=1+\left(2^2+2^3+...+2^{2020}\right)\). Đặt:
\(A=2^2+2^3+...+2^{2020}\Rightarrow2A=2^3+2^4+...+2^{2021}\)
Do 2A - A = A nên \(A=\left(2^3+2^4+...+2^{2021}\right)-\left(2^2+2^3+...+2^{2020}\right)\)
\(A=2^{2021}-2^2\Rightarrow S=1+\left(2^{2021}-2^2\right)=1+2^{2021}-4\)
Vậy: \(S=1+2^{2021}-4\)