K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DH
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 12 2018
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
CW
25 tháng 2 2017
\(B=\left(\frac{x}{y^2+xy}-\frac{x-y}{x^2+xy}\right):\left(\frac{y^2}{x^3-xy^2}+\frac{1}{x+y}\right):\frac{3y}{y}\)
\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}\cdot\frac{x\left(x^2-y^2\right)}{x^2-xy+y^2}\cdot\frac{y}{3x}\)\(=\frac{x-y}{y}\cdot\frac{y}{3x}=\frac{x-y}{3x}\)