Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 7 (7 / 2.9 + 7 / 9.16 + .......... + 7/65.72)
A=7( 1/2 - 1/9 +1/9 - 1/16 +......+1/65 - 1/72)
A= 7 ( 1/2 -1/72)
A= 7 . 35/72
A=245/72
\(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7}{16.23}+.....+\frac{7^2}{65.72}\)
=\(7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+....+\frac{1}{65}-\frac{1}{72}\right)\)
=\(7.\left(\frac{1}{2}-\frac{1}{72}\right)\)
=\(7.\frac{35}{72}\)
=\(\frac{245}{72}\)
Ta có:
C = \(\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7^2}{16.23}+...+\frac{7^2}{65.72}\)
=> C = \(7.\left(\frac{7}{2.9}+\frac{7}{9.16}+\frac{7}{16.23}+...+\frac{7}{65.72}\right)\)
=> C = \(7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+...+\frac{1}{65}-\frac{1}{72}\right)\)
=> C = \(7.\left(\frac{1}{2}-\frac{1}{72}\right)\)
=> C = \(7.\frac{35}{72}=\frac{245}{72}\)
Nhìn kĩ là ra thôi :
\(\frac{7^2}{2.9}+\frac{7^2}{9.16}+...+\frac{7^2}{65.72}\)
= \(7\left(\frac{7}{2.9}+\frac{7}{9.16}+...+\frac{7}{65.72}\right)\)
= \(7\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{65}-\frac{1}{72}\right)\)
= \(7\left(\frac{1}{2}-\frac{1}{72}\right)\)
= \(7.\frac{35}{72}=3\frac{29}{72}\)
a)\(=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}\)
\(=\left(\frac{-3}{7}+\frac{3}{7}\right)-\left(\frac{15}{26}+\frac{2}{13}\right)\)
\(=0-\frac{19}{26}\)
\(=-\frac{19}{26}\)
c)\(=\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{7}\right)-\frac{1}{23}\)
\(=\frac{-11}{23}.2-\frac{1}{23}\)
\(=\frac{-22}{23}-\frac{1}{23}\)
\(=-1\)
1) 4824 - 4824 : 24 - 12 = 4824 - 201 - 12 = 4623 - 12 = 4611
câu a
\(A=\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{2^3.5.10^3+7.10^3}=\frac{33.10^3}{10^3\left(2^3.5+7\right)}=\frac{33.10^3}{10^3.47}=\frac{33}{47}\)
\(B=\frac{3774}{5217}=\frac{34.111}{47.111}=\frac{34}{47}\)
\(\Rightarrow\frac{33}{47}< \frac{34}{47}\)
=> A<B
Đặt \(A=\frac{7^2}{2.9}+\frac{7^2}{9.16}+\frac{7^2}{16.23}+\frac{7^2}{23.30}\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+\frac{1}{16}-\frac{1}{23}+\frac{1}{23}-\frac{1}{30}\right)\)
\(\Rightarrow A=7.\left(\frac{1}{2}-\frac{1}{30}\right)\)
\(\Rightarrow A=\frac{49}{15}\)
đặt biểu thức là B
Ta có công thức :
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức, ta có :
\(B=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.....+\frac{1}{23}-\frac{1}{30}\right)\)
\(B=7.\left(\frac{1}{2}-\frac{1}{30}\right)=7.\frac{7}{15}=\frac{49}{15}\)
Ai thấy đúng thì ủng hộ nha !!!