\(\)Tính

\(\frac{1}{1x2}x\frac{4}{2x3}x\frac{9}{3x4}x.......x\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

\(\frac{1}{1x2}x\frac{4}{2x3}x\frac{9}{3x4}x...x\frac{10000}{100x101}=\frac{1x1}{1x2}x\frac{2x2}{2x3}x\frac{3x3}{3x4}x...x\frac{100x100}{100x101}\)

=\(\frac{1x2x3x...x100}{1x2x3x...x100}x\frac{1x2x3x...x100}{2x3x4x...x101}=1x\frac{1}{101}=\frac{1}{101}\)

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

2 tháng 8 2015

1.

\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2012}{2013}\)

\(A=\frac{1.2.3.4.....2012}{2.3.4.5......2013}\)

\(A=\frac{1}{2013}\)

 

\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)

\(B=\frac{2012\left(2013-2012\right)}{2012\left(2011+2\right)}\)

\(B=\frac{2013-2012}{2011+2}\)

\(B=\frac{1}{2013}\)

\(Vì:\frac{ 1}{2013}=\frac{1}{2013}\)

\(\Rightarrow\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}......\frac{2012.2013}{2013.2013}=\frac{2012.2013-2012.2012}{2012.2011+2012.2}\)

\(Hay: A=B\)

10 tháng 6 2018

\(A=\frac{1\times2}{2\times2}\times\frac{2\times3}{3\times3}\times\frac{3\times4}{4\times4}\times\frac{4\times5}{5\times5}\times...\times\frac{2012\times2013}{2013\times2013}\)

\(\Rightarrow A=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}\times...\times\frac{2012}{2013}\)

\(\Rightarrow A=\frac{1\times2\times3\times4\times...\times2012}{2\times3\times4\times5\times...\times2013}\)

\(\Rightarrow A=\frac{1}{2013}\)

\(B=\frac{2012\times2013-2012\times2012}{2012\times2011+2012\times2}\)

\(\Rightarrow B=\frac{2012\times\left(2013-2012\right)}{2012\times\left(2011+2\right)}\)

\(\Rightarrow B=\frac{2012\times1}{2012\times2013}\)

\(\Rightarrow B=\frac{1}{2013}\)

7 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{499}{500}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{499}{500}\)

\(1-\frac{1}{x+1}=\frac{499}{500}\)

\(\frac{1}{x+1}=1-\frac{499}{500}=\frac{1}{500}\)

=> x + 1 = 500

=> x = 500 - 1

=> x = 499

Vậy x = 499

7 tháng 8 2016

1/1.2 + 1/2.3 + 1/3.4 +...+ 1/x.(x+1)=499/500

1 - 1/2 + 1/2 -1/3 + 1/3 - 1/4 +...+ 1/x -1/(x+1) =499/500

1-1/(x+1)=499/500

=>x/(x+1)=499/500

=>x=499

9 tháng 6 2018

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow M=1-\frac{1}{100}\)

\(\Rightarrow M=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

\(b,N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\Rightarrow N=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}\)

\(\Rightarrow N=\frac{1.98}{2.99}=\frac{49.2}{2.99}=\frac{49}{99}\)

8 tháng 6 2018

\(a,M=1-\frac{1}{100}=\frac{99}{100}\)

\(b=2N=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)

                  \(=1-\frac{1}{99}=\frac{98}{99}\)

   =>\(N=\frac{98}{99}:2=\frac{49}{99}\)

26 tháng 7 2017

\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

Áp dụng công thức : \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}=\frac{99}{100}\)

26 tháng 7 2017

Dap an la 99/100.nho k cho minh.bai giai se gui sau

26 tháng 6 2017

Bài 3 : 

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)

Ta có : \(\frac{1}{1\times2}=\frac{2-1}{1\times2}=\frac{2}{1\times2}-\frac{1}{1\times2}=1-\frac{1}{2}\)

           \(\frac{1}{2\times3}=\frac{3-2}{2\times3}=\frac{3}{2\times3}-\frac{2}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

            \(\frac{1}{99\times100}=\frac{100-99}{99\times100}=\frac{100}{99\times100}-\frac{99}{99\times100}=\frac{1}{99}-\frac{1}{100}\)

  \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{38\times39}\)

Ta có : \(\frac{1}{10\times11}=\frac{11-10}{10\times11}=\frac{11}{10\times11}-\frac{10}{10\times11}=\frac{1}{10}-\frac{1}{11}\)

            \(\frac{1}{11\times12}=\frac{12-11}{11\times12}=\frac{12}{11\times12}-\frac{11}{11\times12}=\frac{1}{11}-\frac{1}{12}\)

           \(\frac{1}{38\times39}=\frac{39-38}{38\times39}=\frac{39}{38\times39}-\frac{38}{38\times39}=\frac{1}{38}-\frac{1}{39}\)

           \(\frac{1}{39\times40}=\frac{40-39}{39\times40}=\frac{40}{39\times40}-\frac{39}{39\times40}=\frac{1}{39}-\frac{1}{40}\)

\(\Rightarrow B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)

\(B=\frac{1}{10}-\frac{1}{40}\)

\(B=\frac{3}{40}\) 

           

26 tháng 6 2017

3. 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

\(B=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{38.39}+\frac{1}{39.40}\)

\(B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)

\(B=\frac{1}{10}-\frac{1}{40}\)

\(B=\frac{3}{40}\)

23 tháng 8 2018

\(\frac{B}{2}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\)

\(\frac{B}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)

\(\frac{B}{2}=\frac{100}{101}\)

\(B=\frac{200}{101}\)

23 tháng 8 2018

B = \(2\left(\frac{1}{1x2}+\frac{1}{2x3}+....+\frac{1}{100x101}\right)\)

B = \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}...+\frac{1}{101}\right)\)

B = \(2\left(1-\frac{1}{101}\right)\)

B = \(2x\frac{100}{101}\)

B = \(\frac{200}{101}\)

20 tháng 1 2017

minh ko biet xin loi bn nha!

minh ko biet xin loi bn nha!

minh ko biet xin loi bn nha!

minh ko biet xin loi bn nha!

22 tháng 7 2018

S=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)

S=1-\(\frac{1}{2010}\)

S=\(\frac{2009}{2010}\)

k nha bn

22 tháng 7 2018

\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}+\frac{1}{2009\times2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}\)

\(=\frac{2009}{2010}\)

Vậy \(S=\frac{2009}{2010}\)

Học tốt #