K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

K MIK NHA BẠN ^^

Tính B= 1 + 2 + 3 + ... + 98 + 99
Tính C = 1 + 3 + 5 + ... + 997 + 999
Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

4A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>S=[n.(n+1).(n+2)] /3

26 tháng 7 2017

Bài 1: C = (999+1). [(999-1):2+1]: 2= 250000

Bài 2: B = (99+1). [(99-1):2+1]: 2= 2500

Bài 3: D = (998+10). [(998-10):2+1]: 2= 249480

Bài 4: 3S= 1.2.3 + 2.3.3 + 3.4.3+...+n.(n+1).3

              = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+n.(n+1).[(n+2)-(n-1)]

              = 1.2.3+2.3.4+2.3+3.4.5-2.3.4+.....+n.(n+1).(n+2)-n.(n+1)-(n-1)

              =n.(n+1).(n+2)

              => A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

22 tháng 11 2015

A = chịu

B = ( 1 + 99 ) + ( 2 + 98 ) + ......

   = 100 . 50 = 5000

C = ( 1 + 999 ) + ( 3 + 997 ) + .....

   = 1000 . 500 = 500000

D = ( 10 + 998 ) + ( 12 + 996 ) + ......

   = 1008 . 495 = 498960

28 tháng 6 2020

a/ Ta có :

\(10A=\frac{10\left(10^{50}+1\right)}{10^{51}+1}=\frac{10^{51}+10}{10^{51}+1}=\frac{10^{51}+1}{10^{51}+1}+\frac{9}{10^{51}+1}=1+\frac{9}{10^{51}+1}\)

\(10B=\frac{10\left(10^{51}+1\right)}{10^{52}+1}=\frac{10^{52}+10}{10^{52}+1}=\frac{10^{52}+1}{10^{52}+1}+\frac{9}{10^{52}+1}=1+\frac{9}{10^{52}+1}\)

\(\frac{9}{10^{51}+1}>\frac{9}{10^{52}+1}\Leftrightarrow10A>10B\Leftrightarrow A>B\)

Vậy...

b/ Mình sửa lại một chút nhé :>

\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}-3=0\)

\(\Leftrightarrow\left(\frac{x-1}{99}-1\right)+\left(\frac{x-2}{98}-1\right)+\left(\frac{x-3}{97}-1\right)=0\)

\(\Leftrightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}=0\)

\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)

\(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)

\(\Leftrightarrow x-100=0\)

\(\Leftrightarrow x=100\)

Vậy...

c/ Đặt :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{1999.2000}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{1999}-\frac{1}{2000}\)

\(=1-\frac{1}{2000}\)

\(=\frac{1999}{2000}\)

Vậy..

Bài 1: 

a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)

\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)

\(=\dfrac{1}{2}\)

c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

9 tháng 1 2021

thanks 

29 tháng 5 2017

a, \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{299.300}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{299}-\dfrac{1}{300}\)

\(=1-\dfrac{1}{300}=\dfrac{299}{300}\)

Vậy \(A=\dfrac{299}{300}\)

b, \(B=\dfrac{10^2}{16.26}+\dfrac{10^2}{26.36}+...+\dfrac{10^2}{86.96}\)

\(=10\left(\dfrac{10}{16.26}+\dfrac{10}{26.36}+...+\dfrac{10}{86.96}\right)\)

\(=10\left(\dfrac{1}{16}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{36}+...+\dfrac{1}{86}-\dfrac{1}{96}\right)\)

\(=10\left(\dfrac{1}{16}-\dfrac{1}{96}\right)\)

\(=10.\dfrac{5}{96}=\dfrac{25}{48}\)

Vậy...

29 tháng 5 2017

a,\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{299.300}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{299}-\dfrac{1}{300}\)

(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)

\(A=\dfrac{1}{1}-\dfrac{1}{300}=\dfrac{299}{300}\)

2 tháng 8 2015

\(2A=\frac{1.2+2.3+3.4+...+98.99}{1.2+2.3+3.4+...+98.99}\)

\(2A=1\)

\(A=\frac{1}{2}\)

17 tháng 9 2016

A= (1x2x3x...x10)/(1x2x3x...x10)x(1x2x3x...x10)/(2x3x4x...x11)

A=1x 1/11=1/11

bạn nhớ nha