\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d. \(\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2023

\(c,\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\\ =\sqrt{\sqrt{3^2}+2\sqrt{3}.1+1}+\sqrt{\sqrt{3^2}-2\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)

\(d,\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\\ =\sqrt{\sqrt{5^2}+2.2\sqrt{5}+2^2}-\sqrt{\sqrt{5^2}-2.2\sqrt{5} +2^2}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)

Y
25 tháng 7 2019

a) \(=\sqrt{5-2\sqrt{5}+1}-2\sqrt{5}-1\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}-2\sqrt{5}-1\)

\(=\sqrt{5}-1-2\sqrt{5}-1=-\sqrt{5}-1\)

b) \(=3+4\sqrt{5}-\sqrt{5-4\sqrt{5}+4}\)

\(=3+4\sqrt{5}-\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=3+4\sqrt{5}-\left(\sqrt{5}-2\right)=5+3\sqrt{5}\)

c) \(=\left(\sqrt{\left(\sqrt{3}-1\right)^2}-1\right)\cdot\frac{1}{2\sqrt{3}-4}\)

\(=\left(\sqrt{3}-2\right)\cdot\frac{1}{2\left(\sqrt{3}-2\right)}=\frac{1}{2}\)

14 tháng 7 2018

a)  \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

    \(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)

b)   \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)

       \(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)

c)  \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

     \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)

d)  \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)

\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)

\(=\sqrt{5+\sqrt{2}}\)

e)  \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)

\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)

\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)

\(=2+\sqrt{9-4\sqrt{5}}\)

\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=2+\sqrt{5}-2=\sqrt{5}\)

f)   đề sai nhé:  

\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)

g)  \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)

h)  \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)

28 tháng 9 2018

\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)

\(\Leftrightarrow x^3=18+3x\)

Tương tự co:

\(y^3=6+3y\)

\(\Rightarrow P=18+3x+6+3y-3\left(x+y\right)+2019=2043\)

6 tháng 7 2017

a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\) 

b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)

c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)

6 tháng 7 2017

câu b với câu c giải thích ra dùm e đc kh ạ?

11 tháng 6 2019

\(\sqrt{8-4\sqrt{3}}-\sqrt{8+4\sqrt{3}}=\sqrt{5-4\sqrt{3}+3}-\sqrt{5+4\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\)

11 tháng 6 2019

\(\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{7-4\sqrt{3}}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{4-4\sqrt{3}+3}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{\left(2-\sqrt{3}\right)^2}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\left(2-\sqrt{3}\right)}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8}+20-10\sqrt{3}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}}+3}}=\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\sqrt{9-\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{9-\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{9-\sqrt{25}}=\sqrt{9-5}=\sqrt{4}=2\)

11 tháng 8 2019

b, t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).(\(\sqrt{10}\)-\(\sqrt{2}\))

t = \(\sqrt{3- \sqrt{5}}\)(3 +\(\sqrt{5}\)).\(\sqrt{2}\)(\(\sqrt{5}\) -1)

t = (\(\sqrt{5}\) -1).(\(\sqrt{5}\) -1).(3 +\(\sqrt{5}\))

t = (\(\sqrt{5}\) -1)2.(3 +\(\sqrt{5}\))

t = (5 - \(2\sqrt{5}\)+1).(3 +\(\sqrt{5}\))

t = 15 + \(5\sqrt{5}\) \(-6\sqrt{5}\)-10+1+\(\sqrt{5}\)

t = 6

a: \(=\sqrt{4+2+\sqrt{3}}=\sqrt{6+\sqrt{3}}\)

c: \(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{43+30\sqrt{2}}\)

d: \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

\(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)

TH1: x>=2

\(D=\sqrt{x-1}+1+\sqrt{x-1}-1=2\sqrt{x-1}\)

TH2: 0<=x<2

\(D=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

 

13 tháng 6 2017

Câu 2b đề là tìm x chứ nhỉ???

b) \(\sqrt{x^2-4}+\sqrt{x-2}=0\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{x^2-4}\ge0\\\sqrt{x-2}\ge0\end{matrix}\right.\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}\sqrt{x^2-4}=0\\\sqrt{x-2}=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x^2-4=0\\x-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\pm2\\x=2\end{matrix}\right.\) <=> x = 2

Vậy x = 2

13 tháng 6 2017

bài 2 câu b) đề sai rồi bạn

còn bài 1 câu b) mình cảm thấy sai sai

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)