Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
\(B=\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)
\(2B=\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(B-2B=\)\(\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)\(-\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(-B=\dfrac{1-2^{2009}}{1-2^{2009}}\)
B=-1
ta có:
2B = 2 + 2^2 +...+ 2^2009 / 1 - 2^2009
2B - B = (2 + 2^2 +...+ 2^2009)-(1 + 2 +...+ 2^2008) / 1 - 2^2009
B = 2^2009 - 1 / 1 - 2^2009
B = -(2^2009 - 1) / 1 - 2^2009 * (-1)
B = 1 * (-1)
B = -1
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
1)
a) \(...=4^4-225=256-225=31\)
b) \(...=8.9.5+120=360-120=240\)
c) \(...=3^4-3^3=81-27=54\)
d) \(...=7^2-1=49-1=48\)
2) a) \(...=2^6=64\)
b) \(...=3^{15}:3^{10}=3^5=243\)
c) \(...=3^3-3^3=0\)
d) \(...=6^3+4^5=216+1024=1240\)
\(B=1+2^3+...+2^{2022}\)
=>\(8B=2^3+2^6+...+2^{2025}\)
=>\(8B-B=2^3+2^6+...+2^{2025}-1-2^3-...-2^{2022}\)
=>\(7B=2^{2025}-1\)
=>\(B=\dfrac{2^{2025}-1}{7}\)
Cảm ơn bạn rất nhiều nha bạn Phước Thịnh