Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{3\sqrt{2}-2\sqrt{3}}.\sqrt{3\sqrt{2}+2\sqrt{3}}\)
= \(\sqrt{18-12}\)
= \(\sqrt{6}\)
b) \(\sqrt{2+2\sqrt{2-\sqrt{2}}}.\sqrt{2-2\sqrt{2-\sqrt{2}}}\)
= \(\sqrt{4-4\left(\sqrt{2-\sqrt{2}}\right)^2}\)
= \(\sqrt{4-4.\left(2-4\sqrt{2}+2\right)}\)
= \(\sqrt{4-8+16\sqrt{2}-8}\)
= \(\sqrt{-12+16\sqrt{2}}\)
c)
\(\left(\sqrt{2}-\sqrt{7}\right).\sqrt{9+2\sqrt{14}}\)
= \(\left(\sqrt{2}-\sqrt{7}\right).\left(2+2\sqrt{7}.\sqrt{2}+7\right)\)
= \(\left(\sqrt{2}-\sqrt{7}\right).\left(\sqrt{2}+\sqrt{7}\right)^2\)
= \(\left(4-7\right).\left(\sqrt{2}+\sqrt{7}\right)\)
= \(-3.\left(\sqrt{2}+\sqrt{7}\right)\)
a)\(\sqrt{\dfrac{2}{2-\sqrt{3}}}=\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)\(=\sqrt{2\left(2+\sqrt{3}\right)}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
b)\(\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\sqrt{\dfrac{3}{8}}+\dfrac{1}{6}=\dfrac{\sqrt{6}}{3}-\sqrt{2^2.6}+\dfrac{2\sqrt{24}}{8}+\dfrac{1}{6}\)
\(=\dfrac{\sqrt{6}}{3}-2\sqrt{6}+\dfrac{\sqrt{2^2.6}}{4}+\dfrac{1}{6}=\dfrac{-5\sqrt{6}}{3}+\dfrac{2\sqrt{6}}{4}+\dfrac{1}{6}\)
\(=\dfrac{-7\sqrt{6}}{6}+\dfrac{1}{6}\)
Nhầm xíu
\(\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{\dfrac{2}{2+\sqrt{3}}}=\sqrt{\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}-\sqrt{\dfrac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{2\left(2+\sqrt{3}\right)}-\sqrt{2\left(2-\sqrt{3}\right)}=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left|\sqrt{3}-1\right|=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
Lời giải:
a. \(\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}.\sqrt{1}+1}=\sqrt{(\sqrt{5}-1)^2}=\sqrt{5}-1\)
b. \(\sqrt{7-4\sqrt{3}}=\sqrt{4-2\sqrt{4}.\sqrt{3}+3}=\sqrt{(\sqrt{4}-\sqrt{3})^2}=\sqrt{4}-\sqrt{3}=2-\sqrt{3}\)
c.
\(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)
\(=\sqrt{(\sqrt{2}-1)^2}-\sqrt{(\sqrt{4}-\sqrt{2})^2}\)
\(=|\sqrt{2}-1|-|\sqrt{4}-\sqrt{2}|=\sqrt{2}-1-(2-\sqrt{2})=2\sqrt{2}-3\)
d.
\(=\sqrt{13+30\sqrt{2+\sqrt{(\sqrt{8}+1)^2}}}=\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)
\(=\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\sqrt{(\sqrt{2}+1)^2}}\)
\(=\sqrt{13+30(\sqrt{2}+1)}=\sqrt{43+30\sqrt{2}}=\sqrt{18+2\sqrt{18.25}+25}\)
\(=\sqrt{(\sqrt{18}+\sqrt{25})^2}=\sqrt{18}+\sqrt{25}=5+3\sqrt{2}\)
a) \(\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)
b) \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
c) \(\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}=\sqrt{2}-1-2+\sqrt{2}=-3+2\sqrt{2}\)
d) Ta có: \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)
\(=\sqrt{13+30\sqrt{2+1+2\sqrt{2}}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)
\(=\sqrt{43+30\sqrt{2}}\)
\(=5+3\sqrt{2}\)
1.
Đặt biểu thức là $A$
Ta thấy:
$\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$
Tương tự với các phân số còn lại và công theo vế thì:
$A=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2019}-\sqrt{2018})$
$=\sqrt{2019}-1$
2.
$\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{5.3}+3}+\sqrt{3-2\sqrt{3.1}+1}$
$=\sqrt{(\sqrt{5}-\sqrt{3})^2}+\sqrt{(\sqrt{3}-1)^2}$
$=|\sqrt{5}-\sqrt{3}|+|\sqrt{3}-1|$
$=\sqrt{5}-\sqrt{3}+\sqrt{3}-1=\sqrt{5}-1$
A: \(A=\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\)
\(=3-3\cdot\dfrac{5\sqrt{2}}{3}+6\sqrt{2}-3\)
\(=-5\sqrt{2}+6\sqrt{2}=\sqrt{2}\)
b: \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\cdot\sqrt{\dfrac{16}{3}}\)
\(=\left|2-\sqrt{3}\right|+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}-6\cdot\dfrac{4}{\sqrt{3}}\)
\(=2-\sqrt{3}+\sqrt{3}+1-4\sqrt{3}\)
\(=3-4\sqrt{3}\)
\(A=\sqrt{9}-3\sqrt{\dfrac{50}{9}}+3\sqrt{8}-\sqrt[3]{27}\\ =3-3\cdot\dfrac{1}{3}\sqrt{25\cdot2}+3\sqrt{4\cdot2}-3\\ =3-1\cdot5\sqrt{2}+3\cdot2\sqrt{2}-3\\ =3-5\sqrt{2}+6\sqrt{2}-3\\ =\sqrt{2}\)
\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}-1}-6\sqrt{\dfrac{16}{3}}\\ =\left|2-\sqrt{3}\right|+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}-6\cdot\dfrac{4\sqrt{3}}{3}\\ =2-\sqrt{3}+\sqrt{3}+1-8\sqrt{3}\\ =3-8\sqrt{3}\)
b: \(=16-2\cdot4\cdot2\sqrt{5}+20-9-4\sqrt{5}\)
=27-20căn 5
a: 2-4căn 3<0
nên biểu thức ko có giá trị
\(b,\left(4-2\sqrt{5}\right)^2-\left(\sqrt{5}+2\right)^2\\ =\left[\left(4-2\sqrt{5}\right)-\left(\sqrt{5}+2\right)\right].\left[\left(4-2\sqrt{5}\right)+\left(\sqrt{5}+2\right)\right]=\left(2-3\sqrt{5}\right)\left(6-\sqrt{5}\right)\)
\(A=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}\)
\(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{99}+\sqrt{100}\)
=10-1
=9
a) \(\sqrt{\dfrac{1}{8}}\cdot\sqrt{2}\cdot\sqrt{125}\cdot\sqrt{\dfrac{1}{5}}\) = \(\sqrt{\dfrac{1}{8}\cdot2}.\sqrt{125\cdot\dfrac{1}{5}}=\sqrt{\dfrac{1}{4}}.\sqrt{25}=\dfrac{1}{2}\cdot5=2,5\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2-1}=1\)
a: \(\sqrt{4\cdot36}=\sqrt{144}=12\)
b: \(\left(\sqrt{8}-3\sqrt{2}\right)\cdot\sqrt{2}\)
\(=\left(2\sqrt{2}-3\sqrt{2}\right)\cdot\sqrt{2}\)
\(=-\sqrt{2}\cdot\sqrt{2}=-2\)
c: \(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}=\dfrac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}=-\sqrt{7}\)
d: \(\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{\sqrt{5}-2}\)
\(=\dfrac{2\left(\sqrt{5}-2\right)+2\left(\sqrt{5}+2\right)}{5-4}\)
\(=2\sqrt{5}-4+2\sqrt{5}+4=4\sqrt{5}\)
`A=sqrt{3-2sqrt2}-sqrt{3+2sqrt2}`
`=sqrt{2-2sqrt2+1}-sqrt{2+2sqrt2+1}`
`=sqrt{(sqrt2-1)^2}-sqrt{(sqrt2+1)^2}`
`=|sqrt2-1|-|\sqrt2+1|`
`=sqrt2-1-sqrt2-1=-2`
Ta có: \(A=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{2}-1-\sqrt{2}-1\)
=-2