Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-2-\sqrt{2+\sqrt{3}}}.\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-2-\sqrt{3}}=\sqrt{4-3}=1\)
\(=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}.\)
\(=\sqrt{4+\sqrt{5.\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)
2. a) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{3x-1}=4\)\(\Rightarrow\left(\sqrt{3x-1}\right)^2=4^2\)
\(\Leftrightarrow3x-1=16\)\(\Leftrightarrow3x=17\)\(\Leftrightarrow x=\frac{17}{3}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{17}{3}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{x-1}=x-1\)\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x-1=x^2-2x+1\)\(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)( thỏa mãn ĐKXĐ )
Vậy \(x=1\)hoặc \(x=2\)
3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)
Vì \(6>1\)\(\Leftrightarrow\sqrt{6}>\sqrt{1}=1\)\(\Rightarrow\sqrt{6}-1>0\)
\(6>4\)\(\Rightarrow\sqrt{6}>\sqrt{4}=2\)\(\Rightarrow\sqrt{6}-2>0\)
\(\Rightarrow\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|=\left(\sqrt{6}-1\right)-\left(\sqrt{6}-2\right)\)
\(=\sqrt{6}-1-\sqrt{6}+2=1\)
hay \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=1\)
2a) \(\sqrt{3x-1}=4\)( ĐKXĐ : \(x\ge\frac{1}{3}\))
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{3x-1}\right)^2=4^2\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
\(\Leftrightarrow x=\frac{17}{3}\)( tmđk )
Vậy phương trình có nghiệm duy nhất là x = 17/3
b) \(\sqrt{x-1}=x-1\)( ĐKXĐ : \(x\ge1\))
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x-1=x^2-2x+1\)
\(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)
Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2
3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
\(=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}-\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot2+2^2}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}\)
\(=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)
\(=\sqrt{6}-1-\left(\sqrt{6}-2\right)\)
\(=\sqrt{6}-1-\sqrt{6}+2\)
\(=1\)
\(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)\(\times\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{4-2-\sqrt{3}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2-\sqrt{3}}\)
= \(\sqrt{4-3}\)
= 1
1. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
b) \(B=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
c) \(C=\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-4\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{2}+1\right|+\left|2-\sqrt{2}\right|\)
\(=\sqrt{2}+1+2-\sqrt{2}=3\)
~~~~~a)~~~~~
\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)^2}\)
\(=\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}-\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{2}}\)
\(=2.\sqrt{\frac{1}{2}}=\sqrt{2}\)
*****b)*****
(Hình như đề có cái gì đó sai sai hả bạn?)
~~~~~c)~~~~~
\(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-2\right)\sqrt{\sqrt{3}+2}\)
\(=\left(3\sqrt{2}-2\sqrt{6}+\sqrt{6}-2\sqrt{2}\right)\sqrt{\left(\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}\right)^2}\)
\(=\left(\sqrt{2}-\sqrt{6}\right).\left(\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}\right)\)
\(=1+\sqrt{3}-\sqrt{3}-3\)
\(=-2\)
*****d)*****
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(2\sqrt{2}+3\sqrt{5}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-2\sqrt{2}-3\sqrt{5}\)
\(=-4\sqrt{5}\)
(Chúc bạn học tốt và tíck cho mìk vs nhé ~~~~~bạn xem lại câu b hộ mình luôn nha~~~~~!)
2) \(A=\sqrt{15a^2-8a\sqrt{15}+16}\\ =\sqrt{\left(a\sqrt{15}-4\right)^2}\)
b) Khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\) thì
\(A=\sqrt{\left[\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)\sqrt{15}-4\right]^2}\)
\(=\sqrt{\left[\left(3+5\right)-4\right]^2}\)
\(=\sqrt{4^2}\)
\(=4\)
a,( √6+2)(√3-√2)
<=> ( √2√3+2)(√3-√2)
<=> √2(√3+√2)(√3-√2)
<=> √2( (√3)2-(√2)2) = √2
b, (√3+1)2-2√3+4
<=> (√3)2 +2√3 +1 -2√3+4 =8
c, (1+√2-√3)(√2+√3)
<=>√2+√3+(√2)2+√6-√6-(√3)2
<=> √2+√3-1
d, √3(√2-√3)2-(√3+√2)
<=> √3( 2-2√6+3)-√3-√2
<=> 5√3-2√18-√3-√2
<=> 4√3-√2(√36-1)
<=> 4√3 - 3√2
e, (1+2√3-√2)(1+2√3+√2)
<=> (1+2√3)2-(√2)2
<=> (1+4√3+(2√3)2)-2
<=> 1+4√3+12-2= 11+4√3
g, (1-√3)2(1+2√3)2
<=>(1-2√3+3)(1+4√3+12)
<=>( 4-2√3)(13+4√3)
<=> 52+16√3-26√3-24
<=> -10√3+28
a) \(\frac{1}{3+\sqrt{2}}+\frac{1}{3-\sqrt{2}}=\frac{\left(3-\sqrt{2}\right)+\left(3+\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\frac{6}{3^2-\left(\sqrt{2}\right)^2}=\frac{6}{7}\)
b) \(\frac{2}{3\sqrt{2}-3\sqrt{3}}-\frac{3}{2\sqrt{3}+3\sqrt{3}}=\frac{2\left(2\sqrt{3}+3\sqrt{3}\right)-3\left(3\sqrt{2}-3\sqrt{3}\right)}{\left(3\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{3}+3\sqrt{3}\right)}=\frac{19\sqrt{3}-9\sqrt{2}}{-45+15\sqrt{6}}=-\frac{13\sqrt{3}+10\sqrt{2}}{15}\)c) \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{5-2\sqrt{15}+3+5+2\sqrt{15}+3}{2}=\frac{16}{2}=8\)d) \(\frac{3}{2\sqrt{2}-3\sqrt{3}}-\frac{3}{2\sqrt{2}+3\sqrt{3}}=\frac{3\left(2\sqrt{2}+3\sqrt{3}\right)-3\left(2\sqrt{2}-3\sqrt{3}\right)}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=-\frac{18\sqrt{3}}{19}\)
`A=sqrt{3-2sqrt2}-sqrt{3+2sqrt2}`
`=sqrt{2-2sqrt2+1}-sqrt{2+2sqrt2+1}`
`=sqrt{(sqrt2-1)^2}-sqrt{(sqrt2+1)^2}`
`=|sqrt2-1|-|\sqrt2+1|`
`=sqrt2-1-sqrt2-1=-2`
Ta có: \(A=\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{2}-1-\sqrt{2}-1\)
=-2