Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo công thức \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
=>\(A=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{2013}.\frac{2013.2014}{2}\)
\(=>A=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2014}{2}=>A=\frac{1}{2}\left(1+2+3+..+2014\right)-\frac{1}{2}\)
\(=>A=\frac{1}{2}.\frac{2014.2015}{2}-\frac{1}{2}=1014552\)
A=1+\(\frac{1+2}{2}\)+\(\frac{1+2+3}{3}\)+...+\(\frac{1+2+3+...+16}{16}\)
A=\(\frac{2}{2}\)+\(\frac{3}{2}\)+\(\frac{4}{2}\)+...+\(\frac{17}{2}\)
A=\(\frac{2+3+4+...+17}{2}\)
A=76(đề thi HSG huyện tui có tui làm zậy mà cũng có điểm tuyệt đối)
\(A=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+....+\frac{1}{16}.\left(1+2+3+....+16\right)\)
\(A=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+\frac{1}{4}\cdot\frac{4.5}{2}+.....+\frac{1}{16}\cdot\frac{16.17}{2}\)
\(A=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{17}{2}\)
\(A=\frac{\left(2+3+4+.....+17\right)}{2}=\frac{\left(2+17\right).16}{2}=\frac{152}{2}=76\)
lam on ai biet thi chi trong toi nay tui se cho ma ngay mai la phai nop rui
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+100}\right)\)
\(A=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}.\frac{9}{\left(1+4\right).4:2}...\frac{5049}{\left(1+100\right).100:2}\)
\(A=\frac{4}{2.3}.\frac{10}{3.4}.\frac{18}{4.5}...\frac{10098}{100.101}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{99.102}{100.101}\)
\(A=\frac{1.2.3...99}{2.3.4...100}.\frac{4.5.6...102}{3.4.5...101}\)
\(A=\frac{1}{100}.\frac{102}{3}=100.34=\frac{1}{100}.34=\frac{17}{50}\)
1.
a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)
c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)
d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)
e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)
Trả lời:
Bài 1:
a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)
b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)
c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)
d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)
e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)
Bài 2:
a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)
b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)
d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)
f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)
A= (1/4-1)(1/9-1).......(1/10000-1)
A=-3/4(-8/9).........(-9999/100^2)
A=-1.3/2.2 (-2.4/3.3)........(-99.101/100.100)
A=-1.(-2).(-3)........(-99)/2.3.4......100 . 2.3.4......101/.3.4....100
A=-1/100 . 102/3=17/50
Vậy A= 17/50
Bài làm
\(A=4.\left(-\frac{1}{2}\right)^3-2.\left(-\frac{1}{2}\right)^2+3.\left(-\frac{1}{2}\right)+1\)
\(A=4.\left(-\frac{1}{8}\right)-2.\left(\frac{1}{4}\right)+3.\left(-\frac{1}{2}\right)+1\)
\(A=-\frac{1}{2}-\frac{1}{2}+\left(-\frac{3}{2}\right)+\frac{2}{2}\)
\(A=-\frac{1}{2}+\left(-\frac{1}{2}\right)+\left(-\frac{3}{2}\right)+\frac{2}{2}\)
\(A=\left[-\frac{1}{2}+\left(-\frac{1}{2}\right)\right]+\left[\left(-\frac{3}{2}\right)+\frac{2}{2}\right]\)
\(A=-\frac{2}{2}+\left(-\frac{1}{2}\right)\)
\(A=-\frac{3}{2}\)
Vậy \(A=-\frac{3}{2}\)
# Chúc bạn học tốt #