K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

A = (22 - 1)(22 + 1)(24 + 1)....(264 + 1) + 1

= (24 - 1)(24 + 1)....(264 + 1) + 1

= (28 - 1)....(264 + 1) + 1

= 2128 - 1 + 1

= 2128

Bài 2:

a: \(\left(a-b-2\right)^2-\left(2a-2b\right)\left(a-b-2\right)+a^2-2ab+b^2\)

\(=\left(a-b\right)^2-4\left(a-b\right)+4+\left(a-b\right)^2-2\left(a-b\right)\left(a-b-2\right)\)

\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left[\left(a-b\right)^2-2\left(a-b\right)\right]\)

\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left(a-b\right)^2+4\left(a-b\right)\)

\(=4\)

b: \(\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)

\(=\left(2^{128}-1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)

\(=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)

\(=2^{512}-1+1=2^{512}\)

c: \(24\left(5^2+1\right)\left(5^4+1\right)\cdot...\cdot\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^{32}-1\right)\left(5^{32}+1\right)-5^{64}\)

=-1

3 tháng 9 2019

b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{64}-1\right)-2^{64}\)

\(=-1\)

3 tháng 9 2019

\(\left(1^2-2^2\right)+\left(3^2-4^2\right)+....+\left(99^2-100^2\right)\) 

\(=\left(1-2\right)\left(2+1\right)+\left(3-4\right)\left(4+3\right)+....+\left(99-100\right)\left(100+99\right)\) 

\(=\left(-1\right)\left(1+2+3+....+100\right)=\frac{\left(-1\right)100.99}{2}=-4950\)

28 tháng 10 2017

Giúp vs @@Phạm Hoàng GiangTrần Quốc LộcTrần Thị Hươnghattori heijiTRẦN MINH HOÀNGAn Nguyễn BáRibi Nkok NgokKien Nguyen

Trần Đăng NhấtHung nguyen

28 tháng 10 2017

Sửa đề bài 1 : Rút gọn

a,\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right).........\left(2^{32}+1\right)-2^{64}\)

3 tháng 10 2015

2A=8(32+1)(34+1)......(364+1)

2A=(32-1)(32+1)(34+1)......(364+1)

2A=(34-1)((34+1)....(364+1)

2A=(364-1)(364+1)

2A=3128-1

Ta có :2A=B=>A<B

7 tháng 10 2017

\(100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+....+\left(2-1\right)\left(2+1\right)\)

\(=1.199+1.195+...+1.3\)

\(=199+195+....+3\)

\(=\left[\left(\dfrac{199-3}{4}\right)+1\right]:2.\left(199+3\right)=5050\)

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

\(3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)......\left(2^{64}+1\right)=2^{128}-1\)

7 tháng 11 2017

\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=199+195+...+3\)

Số các số hạng là : \(\dfrac{199-3}{4}+1=50\)

Tổng : \(\dfrac{\left(199+3\right).50}{2}=5050\)

Vậy A =5050

\(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(=2^{128}-1+1=2^{128}\)

Vậy B = \(2^{128}\)

7 tháng 11 2017

a. A= \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=1\left(100+99\right)+1\left(98+97\right)+...+1\left(2+1\right)\)

\(=100+99+98+97+...+2+1 \\ =\left(100+1\right).100:2\\ =5050\)

b.B=\(3.\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^8-1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1^2\)

\(=2^{128}-1+1 \\ =2^{128}\)

2 tháng 9 2017

Bài : 1 Ta có : (x - 2)3 + 6(x + 1)2 - x3 + 12 = 0 

=> x3 - 6x2 + 12x - 8 + 6(x2 + 2x + 1) - x3 + 12 = 0

=> x3 - 6x2 + 12x - 8 + 6x2 + 12x + 6 - x3 + 12 = 0

=> 24x - 10 = 0

=> 24x = 10

=> x = 5/12

Vạy x = 5/12

2 tháng 9 2017

Bài 4 : Ta có : M = x2 + 6x - 1

=> M = x2 + 6x + 9 - 10

=> M = (x + 3)2 - 10

Vì : \(\left(x+3\right)^2\ge0\forall x\)

Nên : M = (x + 3)2 - 10 \(\ge-10\forall x\)

Vậy Mmin = -10 khi x = -3