K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=199+195+...+3\)

Số các số hạng là : \(\dfrac{199-3}{4}+1=50\)

Tổng : \(\dfrac{\left(199+3\right).50}{2}=5050\)

Vậy A =5050

\(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)....\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)...\left(2^{64}+1\right)+1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(=2^{128}-1+1=2^{128}\)

Vậy B = \(2^{128}\)

7 tháng 11 2017

a. A= \(100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=1\left(100+99\right)+1\left(98+97\right)+...+1\left(2+1\right)\)

\(=100+99+98+97+...+2+1 \\ =\left(100+1\right).100:2\\ =5050\)

b.B=\(3.\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^8-1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1^2\)

\(=2^{128}-1+1 \\ =2^{128}\)

7 tháng 10 2017

\(100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+....+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+....+\left(2-1\right)\left(2+1\right)\)

\(=1.199+1.195+...+1.3\)

\(=199+195+....+3\)

\(=\left[\left(\dfrac{199-3}{4}\right)+1\right]:2.\left(199+3\right)=5050\)

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

\(3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)......\left(2^{64}+1\right)=2^{128}-1\)

DD
16 tháng 1 2022

a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+97+...+2+1\)

\(=\frac{100.\left(100+1\right)}{2}=5050\)

b) \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(=...=\left(2^{64}-1\right)\left(2^{64}+1\right)+1^2=2^{128}-1^2+1^2=2^{128}\)

c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2-2\left(a+b\right)^2\)

\(=2c^2\)

16 tháng 1 2022

a/Có A=100^2+99^2+98^2+...+1^2 -2(99^2+97^2+..+1)

           = Sigma(100)(x=1)(x^2) -2((1^2+2^2+3^2+..+99^2)-(2^2+4^2+...+98^2)

           =Sigma(100)(x=1)(x^2)-2.Sigma(99)(x=1)(x^2)+4sigma(49)(x=1)(x^2)

           =5050

b/bạn lấy 3=2^2-1 rồi dùng hiệu 2 bình nhé

c/tách ra được thôi

21 tháng 3 2019

\(a.A=100^2-99^2+98^2-97^2+...+2^2-1\)

        \(=100+99+98+97+...+2+1\)

         \(=\frac{\left(100+1\right).100}{2}=5050\)(công thức tính dãy số hạng)

\(b.B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

         \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

           \(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

           \(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{64}+1\right)+1\)

            \(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

             \(=2^{4096}-1+1\)

              \(=2^{4096}\)

\(c.\)Đặt\(a+b=d\)

       Thay vào \(C\)ta được:

\(C=\left(d+c\right)^2+\left(d-c\right)^2-2d^2\)

     \(=d^2+2dc+c^2+d^2-2dc+c^2-2d^2\)

      \(=2c^2\)

8 tháng 8 2020

A = 1002 - 992 + 982 - 972 + ...... + 22 - 12

= ( 100 - 99 ) ( 100 + 99 ) + ( 98 - 97 ) ( 98 + 97 ) + ......... + ( 2 - 1 ) ( 2 + 1 )

= 1 + 2 + 3 + ......... + 99 + 100

= ( 100 + 1 ) . 100 : 2 = 5050 

 B = 3 ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 12

= ( 22 - 1 ) ( 22 + 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 24 - 1 ) ( 24 + 1 ) ... ( 264 + 1 ) + 1

= ( 28 - 1 ) ( 28 + 1 ) ... ( 264 + 1 ) + 1

= ( 216 - 1 ) ( 216 + 1 ) ... ( 264 + 1 ) + 1

= ( 232 - 1 ) ( 232 + 1 ) ( 264 + 1 ) + 1

= ( 264 - 1 ) ( 264 + 1 ) + 1

= 2128 - 1 + 1 

= 2128

C = ( a + b + c )2 + ( a + b - c )2 - 2 ( a + b )2

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2 ( a2 + 2ab + b2 )

= a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + ab - ac + ab + b2 - bc - ac - bc + c2 - 2a2 - 4ab - 2b2

= 2c2

8 tháng 8 2020

Bài làm:

a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(A=100+99+98+97+...+2+1\)

\(A=\frac{\left(100+1\right)\times100}{2}=5050\)

b) \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1^2\)

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

...

\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(B=2^{128}-1+1=2^{128}\)

c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(C=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2\left(ab-bc-ca\right)-2a^2-4ab-2b^2\)

\(=2c^2+2\left(ab+bc+ca+ab-bc-ca-2ab\right)\)

\(=2c^2+2.0=2c^2\)

3 tháng 9 2020

Gợi ý : Áp dụng công thức : \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)( tự làm b;c nhé ) 

Tương tự : \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=1+2+3+4+...+100\)

\(=\frac{100\left(100+1\right)}{2}=5050\)

3 tháng 9 2020

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

       =(1002 - 992)+ (982 - 972) + ... + (22 - 12)

      =(100-99)(100+99)+...+(2-1)(2+1)

      =100+99+...+2+1

      =(100+1).100:1

      =5050

b,B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

=(22−1)(22+1)(24+1)(28+1)....(264+1)+1

......

=(264-1)(264+1)+1

=2128−1+1=2128

c,C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

      =a2+b2+c2+2ab+2ac+2bc+a2+b2+c2+2ab−2ac−2bc-2(a2+2ab+b2)

     =2c2

2 tháng 8 2017

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

=> A = (1002 - 992) + (982 - 972) + ... + (22 - 12)

=> A = (100 - 99)(100 + 99) + (98 - 97) (98 + 97) + ..... + 3

=> A = 100 + 99 + 98 + 97 + .... + 3

=> A = 5047

2 tháng 8 2017

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 1

=> B = (22 - 1)(22 + 1) (24 + 1) ... (264 + 1) + 1

=> B = (24 - 1)(24 + 1) ... (264 + 1) + 1

=> B = (264 - 1)(264 + 1) + 1

=> B = 2128 - 1 + 1

=> B = 2128

25 tháng 7 2017

a )\(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)

\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+....+\left(2+1\right)\left(2-1\right)\)

\(=100+99+98+....+2+1\)

\(=\frac{100\left(100+1\right)}{2}=5050\)

b ) \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)

\(=2^{128}-1+1\)

\(=2^{128}\)

c ) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

\(=\left(a^2+b^2+c^2+2ab+2bc+2ac\right)+\left(a^2+b^2+c^2+2ab-2bc-2ac\right)-2\left(a^2+2ab+b^2\right)\)

\(=2a^2+2b^2+2c^2+4ab-2a^2-4ab-2b^2\)

\(=2c^2\)

25 tháng 7 2017

toán lớp mấy thế bạn

15 tháng 8 2018

a) \(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

        \(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)

         \(=100+99+98+97+...+2+1\)

           \(=\frac{\left(1+100\right).100}{2}=5050\)

b) \(B=3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

        \(=\left(4-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

         \(=\left[\left(2^2-1\right)\left(2^2+1\right)\right]\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

          \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right).....\left(2^{64}+1\right)+1\)

Cứ tương tự như thế ......

    \(B=2^{128}-1+1=2^{128}\)

c) \(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)

        \(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ac-2\left(a^2+2ab+b^2\right)\)

         \(=2a^2+2b^2+2c^2+4ab-2a^2-4ab-2b^2\)

          \(=2c^2\)

Vậy C = 2c2