Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left[3^8-\left(3^4\right)^2\right]\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)\\ =\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
\(\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-81^2\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right)\left(3^8-3^8\right)=\left(1^2+2^3+3^4+4^5\right)\left(1^3+2^3+3^3+4^3\right).0=0\)
\(\frac{\frac{6}{13}-\frac{6}{23}+\frac{6}{33}-\frac{6}{43}}{\frac{5}{13}-\frac{5}{23}+\frac{5}{33}-\frac{5}{43}}\)
= \(\frac{6.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}{5.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}\)
= \(\frac{6}{5}\)
k cho mình nhé
e,13 + 23 + 33 + 43 + 53
Áp dụng công thức: 13 + 23 + 33 +...+ n3 = \(\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
ta có: 13 + 23 + 33 + 43 + 53 = \(\left(\dfrac{5.\left(1+5\right)}{2}\right)^2\) = 152 = 225
=
a, 1 + 2 + 3 + 4 3 = 100; 1 3 + 2 3 + 3 3 + 4 3 = 100 nên 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
Vậy 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
b, 16.18.20.22 = (19 – 3)(19 – 1)(19 + 1)(19 + 3)
= (19 – 3)(19+3)(19 – 1)(19 + 1)
= ( 19 2 – 9)( 19 2 – 1)
= 19 4 - 9 . 19 2 - 19 2 + 9
= 19 4 - 10 . 19 2 + 9 < 19 4
Vậy 16.18.20.22 < 19 4
a) \(1^3+2^3\)
\(=3+8\)
\(=11\)
b) \(1^3+2^3+3^3\)
\(=1+8+27\)
\(=9+27\)
\(=36\)
c) \(1^3+2^3+3^3+4^3\)
\(=1+8+27+64\)
\(=9+27+64\)
\(=36+64\)
\(=100\)
a) 13 + 23=9
b) 13 + 23 +33=36
c) 13 + 23 + 33 + 43=100