K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2-1}\right)\)

\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{9999}{10000}\)

\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)...\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)...\left(100\cdot100\right)}\)

\(-A=\frac{\left(1\cdot2\cdot...\cdot99\right)\left(3\cdot4\cdot...101\right)}{\left(2\cdot3\cdot...\cdot100\right)\left(2\cdot3\cdot...\cdot100\right)}\)

\(-A=\frac{1\cdot101}{100\cdot2}\)

\(-A=\frac{101}{200}\)

\(A=\frac{-101}{200}\)

12 tháng 11 2021

c: \(=\dfrac{3}{2}\cdot1-1-20=\dfrac{3}{2}-21=\dfrac{-39}{2}\)

12 tháng 11 2021

khocroi

28 tháng 8 2018

C =\(\frac{1}{100}-\frac{1}{100.99}-...\)\(-\frac{1}{3.2}-\frac{1}{2.1}\)

C = \(\frac{1}{100}-\frac{1}{100}+\frac{1}{99}-\frac{1}{99}+...\)\(+\frac{1}{3}-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)

C = 1

13 tháng 5 2016

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{2}{100}-1=-\frac{49}{50}\)

13 tháng 5 2016

bạn k trước mk mới kb

=1/125

3 tháng 4 2017

k cho minh nha

10 tháng 4 2017

noichung ai k minh thi minh k cho

27 tháng 6 2016

leu

5 tháng 2 2022

Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)

\(=6,3.1,2-21.3,6\)

\(=0,9.7.4.3-7.3.0,9.4\)

\(=6,3.1,2-6,3.1,2\)

\(=0\)

\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)

24 tháng 10 2016

Bài 1:
Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

4 tháng 11 2019

Có phải ở sách NCPT ko bn

16 tháng 9 2023

a) `1/9-0,3. 5/9+1/3`

`=1/9-3/10 . 5/9+1/3`

`=1/9-15/90+1/3`

`=1/9-1/6+1/3`

`=2/18-3/18+6/18`

`=5/18`

b) `(-2/3)^2+1/6-(-0,5)^3`

`=4/9+1/6-(-0,125)`

`=4/9+1/6+0,125`

`=4/9+1/6+1/8`

`=32/72+12/72+9/72`

`=53/72`