Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Áp dụng công thức (a - b).(a+ b) = a.(a+ b) - b.(a+ b) = a2 + ab - ab - b2 = a2 - b2
Ta có
\(M=100^2-99^2+98^2-97^2+...+2^2-1^2\)
M = (100 - 99)(100 + 99) + (98 - 97).(98 + 97) + ...+ (2 - 1)(2+1)
= 100 + 99 + 98 + 97 + ...+ 2 + 1
= (1+100).100 : 2
= 5050
b)
N = (202 - 192 ) + (182 - 172 ) + ...+ (42 - 32 ) + (22 - 12 )
= (20 - 19).(20 + 19) + (18 - 17)(18 + 17) +...+ (4 -3)(4 +3) + (2-1)(2+1) = 39 + 35 + ...+ 7 + 3
N = (39 + 3).10 : 2 = 210
câu g)
\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)
\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)
\(=\frac{12}{3}=4\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)