Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{1 + 3 - 5 - 7 + 9 + 11 - 13 - 17 + .....+ 393 + 395 - 397 - 399}\)
\(\text{có (399-1) : 2 + 1 = 200 số}\)
\(\text{= (1+3-5-7) + (9+11-13-15) + ..... + (393 + 395 - 397 - 399)}\)
\(\text{= (-8) + (-8) + ... + (-8) }\)
\(\text{có 200 : 4 = 50 số -8}\)
\(\text{= (-8) x 50}\)
\(\text{= -400}\)
b) Đặt 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399 là A ta được:
B = 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
=> B = ( 1 + 3 - 5 - 7 ) + ( 9 + 11 - 13 - 15 ) + ... + ( 393 + 395 - 397 - 399 )
=> B = ( -8 ) + ( -8 ) + ... + ( -8 )
Vì tổng B có 200 số hạng,4 số hạng tạo thành 1 cặp nên 200 số hạng tạo thành 50 cặp
=> B = ( -8 ) . 50 => B = -400
A = - ( 1+2+3 +....+ 202) = - 203. 101 = -20503
B= ( 1+2-3-4) + ( 5+6-7-8) +..........+( 97+98 -99-100) + ( 101+102)
= -4 + (-4) .........+ (-4) + 203
= -4 .25 + 203 = 103
\(a,1-2+3-4+5-6+......+199-200\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+.....+\left(199-200\right)\)( 100 cặp )
\(=-1+\left(-1\right)+\left(-1\right)+........+\left(-1\right)\)( 100 số hạng )
\(=-1.100\)
\(=-100\)
\(a.1-2+3-4+5-6+...+199-200\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(199-200\right)\) (có tất cả \(200:2=100\)cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=\left(-1\right).200=-200\)
\(b.1+2-3-4+5+6-7-8+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\) (có \(100:4=25\)cặp)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right).25=-100\)
\(c.1+\left(-6\right)+11+\left(-16\right)+...+21+\left(-26\right)\)
\(=\left[1+\left(-6\right)\right]+\left[11+\left(-16\right)\right]+...+\left[21+\left(-26\right)\right]\) (có tất cả \(26:2=13\)cặp)
\(=\left(-5\right)+\left(-5\right)+...+\left(-5\right)\)
\(=-5.13=-65\)
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)
=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\)
=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)
a) 27.(15-12)-15.(27-12)
= 27.15-27.12-15.27-15.12
=405 - 324 - 405 - 180
= -504
a: 42*99-(-21)*176-35*(-12)
=42*99+21*176+35*12
=42(99+88)+35*12
=8274
b: =(1-2)+(3-4)+...+(199-200)
=(-1)+(-1)+...+(-1)
=-200
a) \(\left|-1\right|+\left|-2\right|+\left|-3\right|+\left|-4\right|+.....+\left|-199\right|+\left|-200\right|\)
\(=1+2+3+4+....+199+200\)
\(=\frac{\left(199+1\right).199}{2}\)
\(=19900\)
b, \(\left|-1\right|+\left|-6\right|+\left|-11\right|+....+\left|-12\right|\)
xem lại đề câu này -_-"
đề đúng rồi