Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=2+4+6+.......+100
Ta có: 4-2=2
6-4=2
2 số liên tiếp hơn kém nhau 2 đơn vị
Dãy số trên có các số hạng là:
(100-2):2+1=50 (số hạng)
Vậy tổng A bằng: (100+2)x50:2=2550
A = -1 - 2 - 3 - ... - 100
= -(1 + 2 + 3 + ... + 100)
= -100.101 : 2
= -5050
--------
B = -2 - 4 - 6 - ... - 100
= -(2 + 4 + 6 + ... + 100)
Số số hạng của B:
(100 - 2) : 2 + 1 = 50 (số)
B = -(100 + 2) . 50 : 2 = -2550
--------
C = -6 - 9 - 12 - ... - 99
= -(6 + 9 + 12 + ... + 99)
Số số hạng của C:
(99 - 6) : 3 + 1 = 32 (số)
C = -(99 + 6) . 32 : 2 = -1680
--------
D = 4 - 8 + 12 - 16 + ... + 196 - 200
Số số hạng của D:
(200 - 4) : 4 + 1 = 50 (số)
D = (4 - 8) + (12 - 16) + ... + (196 - 200)
= -4 + (-4) + ... + (-4) (25 số -4)
= -4.25
= -100
2.(1+2+3+4+.....+100).(89.2)
2.5050.89.2
2(5050.89)
=898900
(1+1+2+2+3+3+4+4+5+5+6+6+...+100+100)* (89 *2 )
=(1+100)+(1+100)+(2+99)+...+(54+57)+(55+56)+(55+56)*187
=101+101+101+...+101+101+101*187
=101*100*187
=10100*187=1888700
\(\frac{100+98+96+94+...+4+2}{100-98+96-94+...+4-2}\)
\(=\frac{\text{[}\left(100-2\right):1+1\text{]}.102:2}{2+2+2+...+2\left(51s\text{ố}2\right)}\)
\(=\frac{5049}{102}=49\frac{1}{2}\)
S = 2.4.6 + 4.6.8 + ... + 98.100.102
=> 8S = 2.4.6.8 + 4.6.8.8 + ... + 98.100.102.8
=> 8S = 2 4 6 (8 - 0) + 4 6 8 (10 - 2) + + 98 100 102 (104 - 96)
=> 8S = 2.4.6.8 - 0 + 4.6.8.10 - 2.4.6.8 + ... + 98.100.102.104 - 96.98.100.102
=> 8S = 98.100.102.104
=> S = 98.100.102.104/8
=> S = 12994800
Đặt S = 2.4 + 4.6 + 6.8 + .... + 98.100 + 100.102
<=> S = 2.( 2 + 2 ) + 4.( 4 + 2 ) + 6.( 6 + 2 ) + ...... + 98.( 98 + 2 ) + 100.( 100 + 2 )
<=> S = 2.2 + 22 + 2.4 + 42 + 2.6 + 62 + .... + 2.98 + 982 + 2.100 + 1002
<=> S = ( 22 + 42 + ... + 982 + 1002 ) + ( 2.2 + 2.4 + 2.6 + .... + 2.98 + 2.100 )
<=> S = 22.( 12 + 22 + ... +492 + 502 ) + 4.( 1 + 2 + 3 + .... + 49 + 50 )
Đặt A = 12 + 22 + 32 + .... + 492 + 502
B = 1 + 2 + 3 + .... + 49 + 50
=> S = 4A + 4B
A = 12 + 22 + 32 + .... + 492 + 502
<=> A = 1.1 + 2.2 + 3.3 + .... + 49.49 + 50.50
<=> A = 1.( 2 - 1 ) + 2.( 3 - 1 ) + 3.( 4 - 1 ) + .... + 49.(50 - 1 ) + 50.( 51 - 1 )
<=> A = 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + 49.50 - 49 + 50.51 - 50
<=> A = ( 1.2 + 2.3 + 3.4 + .... + 49.50 + 50.51 ) - ( 1 + 2 + 3 + ... + 49 + 50 )
Đặt C = 1.2 + 2.3 + 3.4 + .... + 49.50 + 50.51
D = 1 + 2 + 3 + .... + 49 + 50
=> A = C - D
C = 1.2 + 2.3 + 3.4 + ... + 49.50 + 50.51
<=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ..... + 49.50.3 + 50.51.3
<=> 3C = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + 4.5.( 6 - 3 ) + ..... + 49.50.( 51 - 48 ) + 50.51.( 52 - 49 )
<=> 3C = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.49.50 + 50.51.52 - 49.50.51
<=> 3C = 50.51.52
=> C = ( 50.51.52 ) : 3 = 44200
D = 1 + 2 + 3 + .... + 50
SSH : ( 50 - 1 ): 1 + 1 = 50 ( SH )
=> D = ( 50 + 1 ) . 50 : 2 = 1275
=> A = 44200 - 1275 = 42925
B = 1 + 2 + 3 + ... + 49 + 50
SSH : ( 50 - 1 ) : 1 + 1 = 50 ( SH )
=> B = ( 50 +1 ) . 50 : 2 = 1275
=> S = ( 42925 + 1275 ) . 4 = 176800
Vậy S = 176800
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6
A = 1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + ........... + 97 - 98 - 99 - 100 (100 số )
A = (1 - 2 - 3 - 4) + (5 - 6 - 7 - 8) + ................ + (97 - 98 - 99 - 100)
(25 cặp , tính bằng cách lấy số cả dãy chia cho số số của mỗi cặp )
A = (-8) . 25
A = -200
\(8-\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+...+\frac{3}{98\cdot10}\)
\(=8-\frac{3}{2}\left[\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{98\cdot100}\right]\)
\(=8-\frac{3}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right]\)
\(=8-\frac{3}{2}\left[\frac{1}{2}-\frac{1}{100}\right]=8-\frac{3}{2}\cdot\frac{49}{100}=8-\frac{147}{200}=\frac{1453}{200}>1\)
=(100+2).(100-2):2+1):2
=102.50:2
=5100:2
=2550
có số số hạng là:
(100-2):2+1=50 số hạng
tổng của dãy đó là:
(100+2).50:2=2550