K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\left(2^2\cdot5\cdot3^3-5^2\cdot2^3+20\right)\cdot3^2-10\)

\(=\left(4\cdot5\cdot27-25\cdot8+20\right)\cdot9-10\)

\(=\left(540-200+20\right)\cdot9-10\)

\(=3240-10=3230\)

6 tháng 10 2021

Dạ bài hay lắm ạ hihi

8 tháng 5 2015

39.210=39.29.2=69.2=68.12 (rút gọn vs mẫu số)
tương tự vs các phân số trong ngoặc

 

16 tháng 7 2017

1/ \(\frac{9.5^{20}.27^9-3.9^{15}.25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)

\(=\frac{5^{20}.3^{29}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}=\frac{3^{29}.5^{18}.\left(25-9\right)}{3^{29}.5^{18}.\left(7-5\right)}=\frac{16}{2}=8\)

CÁC BÀI CÒN LẠI TƯƠNG TỰ HẾT NHÉ E

20 tháng 1 2017

\(\frac{7256.4375-725}{4375.7255+3650}=\frac{\left(7255+1\right).4375-725}{4375.7255+3650}=\frac{7255.4375+4375-725}{7255.4375+3650}=\frac{7255.4375+3650}{7255.4375+3650}=1\)

\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}=\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{3.16}{16}=3\)

\(\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}\left(13+65\right)}{2^8.104}=\frac{2^2.78}{26.2^2}=\frac{78}{26}=3\)

\(\left(125^3.7^5-175^5.5\right):2001^{2002}\) ( bạn xem lại đề xem sai đâu ko nhé )

Để Thiên giải câu 3 cho:

(1253.75 -1755;5):20012001

\(=\left[\left(5^3\right)^3.7^5-175^5:5\right]:2001^{2002}\)

\(=\left(5^9.7^5-175:5\right):2001^{2002}\)

\(=\left(5^5.5^4.7^4.7-175^4.175:5\right):2001^{2002}\)

\(=\left(5^5.35^4.7-175^4.35\right):2001^{2002}\)

\(=\left(5^4.35^4.5.7-175^4.35\right):2001^{2002}\)

\(=\left(175^4.35-175^4.35\right):2001^{2002}\)

\(=0:2001^{2002}\)

\(=0\)

11 tháng 7 2017

\(a.-8:\left(4\dfrac{1}{5}x+\dfrac{3}{10}\right)=4\dfrac{4}{9}\)

\(4\dfrac{1}{5}x+\dfrac{3}{10}=\left(-8\right):4\dfrac{4}{9}\)

\(4\dfrac{1}{5}x+\dfrac{3}{10}=\dfrac{-9}{5}\)

\(4\dfrac{1}{5}x=\dfrac{-9}{5}-\dfrac{3}{10}\)

\(4\dfrac{1}{5}x=\dfrac{-21}{10}\)

\(x=\dfrac{-21}{10}:\dfrac{21}{5}\)

\(x=\dfrac{-1}{2}\)

Vay \(x=\dfrac{-1}{2}\).

\(b.4\dfrac{2}{3}-\left(\dfrac{3}{5}:x\right)=-20\%\)

\(\dfrac{14}{3}-\left(\dfrac{3}{5}:x\right)=\dfrac{-1}{5}\)

\(\dfrac{3}{5}:x=\dfrac{14}{3}-\dfrac{-1}{5}\)

\(\dfrac{3}{5}:x=\dfrac{73}{15}\)

\(x=\dfrac{3}{5}:\dfrac{73}{15}\)

\(x=\dfrac{9}{73}\)

Vay \(x=\dfrac{9}{73}\).

Câu c; d; e tương tự nhé.

5 tháng 7 2018

\(A=\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{3^{10}\cdot\left(11+5\right)}{3^9\cdot16}=\dfrac{3^{10}\cdot16}{3^9\cdot16}=3\)

\(B=\dfrac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\dfrac{2^{10}\cdot\left(13+65\right)}{2^8\cdot2^2\cdot26}=\dfrac{2^{10}\cdot78}{2^{10}\cdot26}=3\)

\(C=\dfrac{72^3\cdot54^2}{108^4}=\dfrac{\left(2^3\cdot3^2\right)^3\cdot\left(2\cdot3^3\right)^2}{\left(3^3\cdot2^2\right)^4}\\ =\dfrac{2^9\cdot3^6\cdot2^4\cdot3^6}{3^{12}\cdot2^8}=\dfrac{2^{13}\cdot3^{12}}{3^{12}\cdot2^8}=2^5=32\)

\(D=\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\dfrac{11\cdot3^{29}-\left(3^2\right)^{15}}{2^2\cdot3^{28}}=\dfrac{11\cdot3^{29}-3^{30}}{2^2\cdot3^{28}}\\ =\dfrac{3^{29}\cdot\left(11-3\right)}{2^2\cdot3^{28}}=\dfrac{3^{29}\cdot8}{4\cdot3^{28}}=3\cdot2=6\)

Gợi ý 

bn thực hiện phép tính tử mẫu bình thường , khi ra nhưng số trùng nhau bn gạch ra nháp cho đến nhưng số tối giản là ra nha 

chúc bn

học tốt

30 tháng 5 2019

A = \(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)

  = \(\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)

 = \(\frac{3^{10}.16}{3^9.2^4}\)

 = \(\frac{3^{10}.2^4}{3^9.2^4}=3\)

B = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)

  = \(\frac{2^{10}\left(13+65\right)}{2^8.104}\)

  = \(\frac{2^{10}.78}{2^8.104}\)

  = \(\frac{2^{10}.13.2.3}{2^8.2^3.13}\)

 = \(\frac{2^{11}.13.3}{2^{11}.13}=3\)

9 tháng 4 2018

a. \(\dfrac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}\) = \(\dfrac{3^{10}.\left(-5\right)^{20}.\left(-5\right)}{\left(-5\right)^{20}.3^{10}.3^2}\) = \(\dfrac{-5}{3^2}\)= \(\dfrac{-5}{9}\)

b. \(\dfrac{-11^5.13^7}{11^5.13^8}\) = \(\dfrac{-11^5.13^7}{11^5.13^7.13}\)= \(\dfrac{-1}{13}\)

c. \(\dfrac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}\)= \(\dfrac{2^{10}\left(3^{10}-3^9\right)}{2^9.3^{10}}\)= \(\dfrac{2^{10}.3}{2^9.3^{10}}\)= \(\dfrac{2^9.2.3}{2^9.3.3^9}\)= \(\dfrac{2}{3^9}\)=\(\dfrac{2}{19683}\)