Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mi sửa lại:
\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)
A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Lại có B = \(\frac{1}{101.200}+\frac{1}{102.199}+...+\frac{1}{200.101}\)
=> 301B = \(\frac{301}{101.200}+\frac{301}{102.199}+...+\frac{301}{200.101}\)
=> 301B = \(\frac{1}{101}+\frac{1}{200}+\frac{1}{102}+\frac{1}{199}+...+\frac{1}{200}+\frac{1}{101}=2\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
=> B = \(\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)\)
Khi đó \(\frac{A}{B}=\frac{\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}{\frac{2}{301}\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)}=\frac{1}{\frac{2}{301}}=\frac{301}{2}=150,5\)
Đặt S = 1012 + 1022 + ... + 1992 + 2002
S = 101 . 101 + 102 . 102 + ... + 199.199 + 200.200
S = 101.(102 - 1) + 102.(103 - 1) + .... + 199.(200 - 1) + 200.(201 - 1)
S = 101.102 - 101 + 102.103 - 102 + ... + 199.200 - 199 + 200.201 - 200
S = (101.102 + 102.103 + ... + 199.200 + 200.201) - (101 + 102 + ... + 200)
Đặt A = 101.102 + 102.103 + ... + 199.200 + 200.201
B = 101 + 102 + ... + 200
Giải tiếp nha :
Ta có : A = 101.102 + 102.103 + ... + 199.200 + 200.201
3A = 101.102.3 + 102.103.3 + ... + 199.200.3 + 200.201.3
3A = 101.102.(103-100) + 102.103.(104-101) + ... + 199.200.(201-198) + 200.201.(202 - 199)
3A = 101.102.103 - 100.101.102 + 102.103.104 - 101.102.103 + ... + 199.200.201 - 198.199.200 + 200.201.202- 199.200.201
3A = (101.102.103 + 102.103.104 + ... + 199.200.201 + 200.201.202) - (100.101.102 + 101.102.103 + ... + 198.199.20 + 199.200.201)
3A = 200.201.202 - 100.101.102
3A = 8120400 - 1030200
3A = 7090200
A = 7090200 : 3 = 2363400
B = 101 + 102 + ... + 200
Số số hạng của B là : (200 - 101) + 1 = 100 (số hạng)
Tổng B là : (101 + 200) . 100 : 2 = 15050
=> S = A - B = 2363400 - 15050 = 2348350
Vậy ...
Cho G =1/100^2+1/101^2+1/102^2+....+1/198^2+1/199^2 . CMR 1/200 bé hơn G bé hơn 1/99
Giúp mk với nha.
Ta có : \(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\frac{1}{101^2}< \frac{1}{100.101}\)
\(\frac{1}{102^2}< \frac{1}{101.102}\)
...
\(\frac{1}{198^2}< \frac{1}{197.198}\)
\(\frac{1}{199^2}< \frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99.100}+\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{197.198}+\frac{1}{198.199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow G< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)(1)
Ta có : \(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\frac{1}{101^2}>\frac{1}{101.102}\)
\(\frac{1}{102^2}>\frac{1}{102.103}\)
...
\(\frac{1}{199^2}>\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{199.200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{199}-\frac{1}{200}\)
\(\Rightarrow G>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{200}< G< \frac{1}{99}\)
Vậy \(\frac{1}{200}< G< \frac{1}{99}\).