Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4x}{\sqrt{7x-6}}+\frac{4\sqrt{7x-6}}{x}=8\) Đặt \(\frac{x}{\sqrt{7x-6}}=t\left(ĐK:t\ge0\right)\Leftrightarrow\frac{1}{t}=\frac{\sqrt{7x-6}}{x}\\ Pt\Leftrightarrow4t+\frac{4}{t}=8\Leftrightarrow4t^2+4-8t=0\Leftrightarrow t=1\left(tm\right)\)
Với
\(t=1\Leftrightarrow\frac{x}{\sqrt{7x-6}}=1\Leftrightarrow x=\sqrt{7x-6}\Leftrightarrow x^2=7x-6\Leftrightarrow x^2-7x+6=0\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=1\end{array}\right.\)
Vậy \(s=\left\{1;6\right\}\)
\(A=\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\left(ĐK:x>0;x\ne1;x\ne4\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\)
\(=\frac{2\left(\sqrt{x}+1\right)}{3\sqrt{x}}\)
\(\frac{1}{xy}\cdot\sqrt{\frac{x^2y^2}{2}}=\frac{1}{xy}\cdot\frac{xy}{\sqrt{2}}=\frac{1}{\sqrt{2}}\)
\(\frac{3}{a^2-b^2}\cdot\sqrt{\frac{2\left(a+b\right)^2}{9}}=\frac{3}{a^2-b^2}\cdot\frac{\sqrt{2}\left(a+b\right)}{3}=\frac{\sqrt{2}}{a-b}\)
\(\left(x-2y\right)\sqrt{\frac{4}{\left(2y-x\right)^2}}=\left(x-2y\right)\cdot\frac{2}{\left(x-2y\right)}=2\)
câu 1 chưa có điều kiện x y mà lại không cho giá trị tuyệt đối
\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow\sqrt{x+\frac{1}{4}+2\sqrt{x+\frac{1}{4}}\cdot\frac{1}{2}+\frac{1}{4}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=2\)
\(\Leftrightarrow\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\) (do \(\sqrt{x+\frac{1}{4}}+\frac{1}{2}>0\forall x\))
\(\Leftrightarrow\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)
\(\Leftrightarrow x+\frac{1}{4}=\frac{9}{4}\)
\(\Leftrightarrow x=2\)
ta có:
\(\left(100+\frac{99}{2}+\frac{98}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-2\)
=\(\left(1+\frac{99}{2}+1+\frac{98}{3}+1+...+\frac{1}{100}+1\right):\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}\right)-2\)
=\(\left(\frac{101}{101}+\frac{101}{2}+\frac{101}{3}+...+\frac{101}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}\right)-2\)
=\(101\left(\frac{1}{101}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right):\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}\right)-2\)
=101-2=99
cho mk hỉ bn vất số 100 đi đâu r