Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)
\(a,=\dfrac{x^3-\left(x-1\right)\left(x^2+x+1\right)}{1-x}=\dfrac{x^3-x^3+1}{1-x}=\dfrac{1}{1-x}\\ b,=\dfrac{2x+x^2+3x+2+2-x}{\left(x+2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x+2\right)^2}=1\)
\(\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(=\frac{2x-9}{x^2-2x-3x+6}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\frac{2x-9}{x\left(x-2\right)-3\left(x-2\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-3x-2}{\left(x-3\right)\left(x-2\right)}\)
\(=\frac{2x-9-x^2+9+2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{x^2-2x+x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{x\left(x-2\right)+\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+1}{x-3}\)
x^2-5x+6= (x-2)(x-3)
Áp dụng vào biểu thức ta đc
\(=(2x+9)/((x-2)(x-3))-((x+3)(x-3)/((x-2)x-3))+((2x+1)(x-2))/((x-3)(x-2)\)
=(2x+9-x^2+9+2x^2-3x-2)/(x-2)(x-3)
=(16-x+x^2)/(x-2)(x-3)
con lại bạn tự khai triển ra nhé!
\(\left|x+4\right|=2x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=2x-5\\x+4=-2x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=-5-4\\x+2x=5-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=-9\\3x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=9\\x=\frac{1}{3}\end{cases}}}\)
Vậy x=9; x=\(\frac{1}{3}\)
giải
\(\Rightarrow\orbr{\begin{cases}x+4=2x-5\\x+4=-2x+5\end{cases}\Rightarrow\orbr{\begin{cases}x-2x=-5-4\\x+2x=5-4\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-9\\3x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=9\\x=\frac{1}{3}\end{cases}}}\)
vậy pt có 2 nghiệm là \(9;\frac{1}{3}\)
\(x=2020\\ \Leftrightarrow x+1=2021\)
Thay vào biểu thức:
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\\ =x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1=1\)
a: M=x^3+27-(27-8x^3)
=x^3+27-27+8x^3
=9x^3
=9*20^3=72000
b: \(M=x^3-\left(2y\right)^3+16y^3=x^3+8y^3\)
=(x+2y)(x^2-2xy+4y^2)
=0