Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)
\(5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)
\(4A=1-\frac{1}{5^{100}}\)
\(A=\frac{1-\frac{1}{5^{100}}}{4}\)
\(A=\frac{1}{4}-\frac{1}{5^{100}}:4\)
\(A=\frac{1}{4}-\frac{1}{5^{100}.4}\)
=> \(V=4.5^{100}.\left(\frac{1}{4}-\frac{1}{5^{100}.4}\right)+1\)
\(V=\left(4.5^{100}.\frac{1}{4}-4.5^{100}.\frac{1}{5^{100}.4}\right)+1\)
\(V=\left(5^{100}-1\right)+1\)
\(V=5^{100}\)
\(4\cdot5^{100}\cdot\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)
\(=4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\right)+1\)
\(=4\cdot\left(5^{99}+5^{98}+5^{97}+...+1\right)+1\)
\(\text{Đặt }S=5^{99}+5^{98}+5^{97}+...+1\)
\(5S=5^{100}+5^{99}+5^{98}+...+5\)
\(5S-S=5^{100}-4\)
\(4S=5^{100}-4\)
\(S=\frac{5^{100}-4}{4}\)
\(\text{Quay lại bài toán ta có : }\)
\(4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}+1=\right)\) \(4\cdot\left(\frac{5^{100}-4}{4}\right)+1\)
\(=5^{100}-4+1\)
\(=5^{100}-3\)
\(\text{Mình nghĩ chắc cách làm này đúng rồi đó ! Bạn tham khảo nha ! Bài mình tự nghĩ đó ! Nếu có sai sót gì bạn tự chỉnh nha !}\)
bn giải thích cho mk đoạn \(5S-S=5^{100}-4\)đc ko sao lại trừ 4
\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)
\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)
\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)
\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)
Học good
\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)
\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)
\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)
\(=-\frac{1}{100}\cdot\frac{101}{2}\)
\(=-\frac{101}{200}\)
\(C=(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}):(\frac{5}{12}+1-\frac{7}{11})\)
\(=\left(\frac{88}{132}-\frac{33}{132}+\frac{60}{132}\right):\left(\frac{55}{132}+\frac{132}{132}-\frac{84}{132}\right)=\left(\frac{115}{132}\right):\frac{103}{132}=\frac{115}{132}.\frac{132}{103}=\frac{115}{103}\)
\(D=1\frac{1}{3}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-\frac{25}{100}.\frac{1}{2}=\frac{1}{3}+\frac{1}{8}:\frac{1}{4}-\frac{1}{8}=\frac{1}{3}+\frac{1}{2}-\frac{1}{8}=\frac{8+12-3}{24}=\frac{17}{24}\)
\(E=\left(-\frac{1}{2}\right)^2-\left(-2\right)^2-5^0=\frac{1}{4}-4-1=\frac{1-16-4}{4}=\frac{-19}{4}\)
bạn viết rõ được ko
mình viết thừa số 1 ở cuối nhé