K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

bạn viết rõ được ko

22 tháng 7 2016

mình viết thừa số 1 ở cuối nhé

22 tháng 7 2016

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)

\(4A=1-\frac{1}{5^{100}}\)

\(A=\frac{1-\frac{1}{5^{100}}}{4}\)

\(A=\frac{1}{4}-\frac{1}{5^{100}}:4\)

\(A=\frac{1}{4}-\frac{1}{5^{100}.4}\)

=> \(V=4.5^{100}.\left(\frac{1}{4}-\frac{1}{5^{100}.4}\right)+1\)

\(V=\left(4.5^{100}.\frac{1}{4}-4.5^{100}.\frac{1}{5^{100}.4}\right)+1\)

\(V=\left(5^{100}-1\right)+1\)

\(V=5^{100}\)

2 tháng 4 2023

1+1=3 :)))

4 tháng 5 2019

\(4\cdot5^{100}\cdot\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)+1\)

\(=4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}\right)+1\)

\(=4\cdot\left(5^{99}+5^{98}+5^{97}+...+1\right)+1\)

\(\text{Đặt }S=5^{99}+5^{98}+5^{97}+...+1\)

\(5S=5^{100}+5^{99}+5^{98}+...+5\)

\(5S-S=5^{100}-4\)

\(4S=5^{100}-4\)

\(S=\frac{5^{100}-4}{4}\)

\(\text{Quay lại bài toán ta có : }\)

 \(4\cdot\left(\frac{5^{100}}{5}+\frac{5^{100}}{5^2}+\frac{5^{100}}{5^3}+...+\frac{5^{100}}{5^{100}}+1=\right)\)        \(4\cdot\left(\frac{5^{100}-4}{4}\right)+1\)

\(=5^{100}-4+1\)

\(=5^{100}-3\)

                                  \(\text{Mình nghĩ chắc cách làm này đúng rồi đó ! Bạn tham khảo nha ! Bài mình tự nghĩ đó ! Nếu có sai sót gì bạn tự chỉnh nha !}\)

4 tháng 5 2019

bn giải thích cho mk đoạn \(5S-S=5^{100}-4\)đc ko sao lại trừ 4

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)

\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)

\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)

Học good

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)

\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)

\(=-\frac{1}{100}\cdot\frac{101}{2}\)

\(=-\frac{101}{200}\)

2 tháng 5 2016

\(\frac{0,8:\left(\frac{4}{5}:1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(100-\frac{2}{25}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right).2\frac{2}{27}}+\left(1,2.0,5\right):\frac{3}{5}\)

=\(\frac{0,8:0,64}{0,64.25-\frac{1}{25}}+\frac{\left(100-\frac{2}{5}\right).\frac{7}{4}}{\left(\frac{59}{9}-\frac{13}{4}\right).\frac{56}{27}}+\left(1,2.0,5\right).\frac{5}{3}\)

=

1 tháng 5 2016

mình ra \(=27\frac{45}{150}\) nhưng ko bít cách làm

25 tháng 3 2020

1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)

2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)

Vậy ......

hok tốt