\(S=1+2+5+14+.....+\frac{3^{n-1}+1}{2}\)với n l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

nhìn cái cuối là biết quy luật đó bạn :))

\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)

\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)

\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)

chỗ 30+31+...+3n-1 bn tự tính :))

12 tháng 11 2015

3n+2 - 2n+2 +3n - 2n = 3n . 32 - 2n. 22 +3n -2n

                             = 3n(32+1) - (2n.22 +2n)

                             =3n . 10 - 2n .5

                             =3n.10 - 2n-1 .2 .5

                             = 3n.10 - 2n-1 .10

                             = 10(3n - 2n-1)

vì 10 chia hết cho 10 nên 10(3n-2n-1) chia hết cho 10

                         =>  3n+2 - 2n+2 +3n -2n chia hết cho 10

                           

12 tháng 11 2015

Ai làm nhanh nhất mình sẽ **** xin cảm ơn các bạn mình đang cần gấp

 

DD
1 tháng 3 2021

a) Chỉ là thay số nên bạn tự làm nhé. 

b) \(y_1=1\)\(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\)\(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.

Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\)\(k\)chẵn thì \(y_k=0\)(1).

Khi đó ta có: 

\(A=y_1+y_2+...+y_{2021}\)

\(A=1+0+1+...+1\)

\(A=\frac{2021-1}{2}+1=1011\)

3 tháng 2 2016

\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{n-1}}\)

\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^n}\right)=2-\frac{1}{2^n}\)

\(\Rightarrow S=2-\frac{1}{2^n}>1,999=\frac{1999}{1000}\Rightarrow\frac{1}{2^n}>2-\frac{1999}{1000}=\frac{1}{1000}\Rightarrow\frac{1}{2^n}>\frac{1}{1000}\)

=>2n>1000

mà n là số nguyên dương nhỏ nhất=>n=10 (210=1024>1000)

vậy n=10

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
1 tháng 6 2018

b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)

\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)

\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)

\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)

Từ (1);(2)\(\Rightarrow0< D< 1\)

\(\Rightarrowđpcm\)

20 tháng 7 2020

a,\(C>0\)

\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)

\(\Rightarrow0< A< 1\)

\(\Rightarrow A\notinℤ\)

c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

Ta quy đồng 3 số đầu

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)

\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)

\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)

\(1< E< 2\)

\(E\notinℤ\)

11 tháng 2 2019

a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)

\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)

\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)

\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)

11 tháng 2 2019

b,\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)

\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)

\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)

\(=3^n\cdot9+1-2^n\cdot4+1\)

\(=3^n\cdot10-2^n\cdot5\)

Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)

\(3^n\cdot10⋮10\)

Vậy : ....

13 tháng 12 2015

Em mới học lớp 5 thôi ạ!

25 tháng 9 2018

1a)

x\inZ; x<2

25 tháng 9 2018

1

a.=>x-2<0=>x<2

b.=>3x+6<0=>3x<-6=>x<-2

Chúc bạn học tốt ! ^_^