K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Đáp án C

Khối đa diện đều loại {5;3} là khối đa diện mà mỗi mặt đa diện có 5 cạnh, mỗi đỉnh là đỉnh chung của 3 mặt.

Khối đa diện này gồm 12 mặt, mỗi mặt có 5 đỉnh, mỗi đỉnh là đỉnh chung của 3 mặt nên số đỉnh của khối đa diện là 5.12:3 = 20

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

NV
14 tháng 4 2020

Số tam giác: \(C_{2n}^3=\frac{\left(2n\right)!}{\left(2n-3\right)!.6}=\frac{n\left(2n-1\right)\left(2n-2\right)}{3}\)

Cứ hai đường chéo qua tâm của đa giác đều sẽ đóng vai trò hai đường chéo của hình chữ nhật

Đa giác có \(n\) đường chéo qua tâm \(\Rightarrow C_n^2=\frac{n\left(n-1\right)}{2}\) hình chữ nhật

Ta có pt:

\(\frac{n\left(2n-1\right)\left(2n-2\right)}{3}=10n\left(n-1\right)\)

\(\Leftrightarrow n\left(n-1\right)\left(n-8\right)=0\Rightarrow n=8\)

24 tháng 4 2016

Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).

Theo bài ta có phương trình :

\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)

\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)

\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)

\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)

\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))

\(\Leftrightarrow n=18\)

Vậy đa giác đều có 16 cạnh, (thập lục giác đều)

NV
6 tháng 11 2019

a/ Có 240 vecto nên có 120 đoạn thẳng được tạo ra

\(\Rightarrow C_n^2=120\Rightarrow n=16\)

b/ Số vecto là 130 \(\Rightarrow\) số đường chéo là 65

\(\Rightarrow C_n^2-n=65\Rightarrow n=13\)

26 tháng 11 2019

a. Tại sao 240 vecto lại có 120 đoạn thẳng?

b. Tại sao 130 vecto lại có 65 đường chéo?

Không phải là 1 vecto tương ứng với 1 đoạn thẳng à?

Sao số vecto lại phải chia 2 ra để có số đoạn thẳng?

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

1 tháng 5 2017

TOÁN 6 :

O x x' z y 100* 50*

a) \(\widehat{xOz}=\widehat{xOy}+\widehat{yOz}\)

\(100^O=50^O+\widehat{yOz}\)

\(\widehat{yOz}=100^o-50^o\)

\(\widehat{yOz}=50^o\)

b) Vì \(\widehat{xOy}=\widehat{yOz}=\dfrac{\widehat{xOz}}{2}=\dfrac{100^o}{2}=50^o\)

c) Vì Ox' là tia đối của Ox nên suy ra \(\widehat{xOx'}=180^o\)

\(\widehat{xOx'}=\widehat{xOz}+\widehat{zOx'}\)

\(180^o=100^o+\widehat{zOx'}\)

\(\widehat{zOx'}=180^o-100^o\)

\(\widehat{zOx'}=80^o\)