Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\)
\(9A=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\)
\(9A+A=\left(\frac{1}{3}-\frac{1}{3^{^2}}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\right)+\left(\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\right)\)
\(10A=\frac{1}{3}-\frac{1}{3^{204}}\)
A = (1/3 - 1/3204) : 10
Vậy A = (1/3 - 1/3204) : 10.
A= \(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\left(1\right)\\ \)
\(\frac{1}{3^2}A=\frac{1}{3^2}\left(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\right)\)
\(\frac{1}{3^2}A=\frac{1}{3^4}-\frac{1}{3^6}+\frac{1}{3^8}-\frac{1}{3^{10}}+...+\frac{1}{3^{204}}-\frac{1}{3^{206}}\left(2\right)\)
Từ (1) và (2) vế theo vế ta có :\(A-\frac{1}{3^2}A=\frac{8}{9}A=\frac{1}{3^2}-\frac{1}{3^{206}}\)
\(\Rightarrow A=\left(\frac{1}{3^2}-\frac{1}{3^{206}}\right):\frac{8}{9}\)
2:
a: =4+3/8+5+2/3
=9+3/8+2/3
=216/24+9/24+16/24
=216/24+25/24
=241/24
b; =2+3/8+1+1/4+3+6/7
=6+3/8+1/4+6/7
=6+5/8+6/7
=419/56
c: \(=2+\dfrac{3}{8}-1-\dfrac{1}{4}+5+\dfrac{1}{3}\)
=6+3/8-1/4+1/3
=6+1/8+1/3
=6+11/24
=155/24
d: \(=3+\dfrac{5}{6}+6\cdot\dfrac{13}{6}\)
=3+13+5/6
=16+5/6
=101/6
e: =3+1/2+4+5/7-5-5/14
=3+4-5+1/2+5/7-5/14
=2+7/14+10/14-5/14
=2+12/14
=2+6/7=20/7
f: =9/2+1/2:11/2
=9/2+1/11
=99/22+2/22=101/22
vì 204 chia hết 4 ta ghép 4 số liên tiếp lại một cặp sau đó được bao nhiêu mổi cặp rồi nhân lên
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
=1+(2-3-4+5)+3-4-5+6)+...+(200-201-202+203)+204
=1+0+0+...+0+204
=1+204
=205
tinh
1+2 -3 -4 +5+3-4-5+6 +4-5-6 +7 + ....+200-201 -202 + 203 + 204 =1+0+...+0+204=1+204=205.
bn k cho mik nha. ^-^ thanks bn trc.
\(\)Đặt \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{205}}{\frac{204}{1}+\frac{203}{2}+\frac{202}{3}+...+\frac{1}{204}}=\frac{B}{C}\)
Biến đổi C:
\(C=\left(\frac{204}{1}+1\right)+\left(\frac{203}{2}+1\right)+\left(\frac{202}{3}+1\right)+...+\left(\frac{1}{204}+1\right)-204\)
\(=205+\frac{205}{2}+\frac{205}{3}+..+\frac{205}{204}+\frac{205}{205}-205\)
\(=205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}}{205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)}=\frac{1}{205}\)
a) Ta có : C = 32 + 34 + 36 + ... + 3202 + 3204
=> 32C = 9C = 34 + 36 + 38 + .... + 3204 + 3206
Lấy 9C trừ C theo vế ta có
9C - C = (34 + 36 + 38 + .... + 3204 + 3206) - ( 32 + 34 + 36 + ... + 3202 + 3204)
=> 8C = 3206 - 32
=> C = \(\frac{3^{206}-3^2}{8}\)
d) Ta có D = \(\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\)
=> 32D = 9D = \(1-\frac{1}{3^2}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\)
Lấy 9D cộng D theo vế ta có :
9D + D = \(\left(1-\frac{1}{3^2}+...+\frac{1}{3^{200}}-\frac{1}{3^{202}}\right)+\left(\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{202}}-\frac{1}{3^{204}}\right)\)
=> 10D = \(1-\frac{1}{3^{204}}\)
=> D = \(\frac{1}{10}-\frac{1}{3^{204}.10}\)