\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

A=1/2+1/2^2+1/2^3+...+1/2^2016     (1)

2A=1+1/2+1/2^2+...+1/2^2015         (2)

Lấy (2)-(1) được:

A=1+1/2+1/2^2+...+1/2^2015-(1/2+1/2^2+1/2^3+...+1/2^2016)

A=1+1/2+1/2^2+...+1/2^2015-1/2-1/2^2-1/2^3-...-1/2^2016

A=1-1/2^2016

Vậy A=1-1/2^2016

14 tháng 2 2018

           \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(\Leftrightarrow\)\(A=1-\frac{1}{2^{2016}}\)

14 tháng 2 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)

\(2A=1+\frac{1}{2}+.........+\frac{1}{2^{2015}}\)

\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2016}}\right)\)

\(A=1-\frac{1}{2^{2016}}\)

4 tháng 3 2018

Có : 

2A = 1+1/2+1/2^2+.....+1/2^2015

A = 2A - A = (1+1/2+1/2^2+......+1/2^2015) - (1/2+1/2^2+.....+1/2^2016)

   = 1 - 1/2^2016

Tk mk nha

4 tháng 3 2018

Xét \(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

          \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

Trừ vế theo vế ta được:

   \(2A-A=A=1-\frac{1}{2^{2016}}\)

Không thể tính được nữa vì số mũ quá lớn!!!

10 tháng 4 2017

A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/100

Ta đổi A = 2-1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100

A= 2 - 1 - 1/100 =200/100 -100/100 - 1/100

A= 99/100

10 tháng 4 2017

Cảm ơn bạn Kudo Shinichi, nhưng 

1=2-1 ->ok

1/2=1-1/2 ->ok

1/3=1/2-1/3 -> sai 

vì 1/2-1/3=1/6

12 tháng 3 2017

2a=1+1/2+1/2^2+..............+1/2^2014+1/2^2015

2a-a=(1+1/2+1/2^2+.............+1/2^2014+1/2^2015)-(1/2+1/2^2+1/2^3+..........+1/2^2015+1/2^2016)

a=1-1/2^2016

a=2^2016-1/2^2016

vậy a =2^2016/2^2016

9 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)

22 tháng 3 2018

\(A=\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+...+\left(\frac{2015}{2}+1\right)+1\)

     =    \(\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...\frac{2017}{2}+\frac{2017}{2017}\)

     =  \(2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)\)

  \(\Rightarrow\frac{A}{B}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}\)

                = 2017

Chúc bạn học giỏi!

22 tháng 3 2018

ghtyuhyui

7 tháng 4 2016

=2015/2016

14 tháng 5 2016

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

14 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi