K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

=2015/2016

20 tháng 3 2016

xét mẫu(chỗ 1/2014 sửa lại thành 2/2014)

=(1/2015+1)+(2/2014+1)+...+(2013/3+1)+(2014/2+1)+(2015/1-2014)

=2016/2015+2016/2014+...+2016/3+2016/2+1

=2016.(1/2016+1/2015+...+1/4+1/3+1/2)

=> A= 1/2016

mún dễ hỉu hơn hãy gửi tin nhắn cho mik

20 tháng 3 2016

1 phan 2016. cac lam de lam

10 tháng 3 2016

Mẫu số = \(\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

            = \(1+1+1+...+1\) ( có tổng cộng 2015 số 1) \(+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)

            = \(\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)\) 

            = \(\left(\frac{2}{2}+\frac{2014}{2}\right)+\left(\frac{3}{3}+\frac{2013}{3}\right)+...+\left(\frac{2015}{2015}+\frac{1}{2015}\right)\)

            = \(\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}\)

            = \(2016.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\right)\)

Tử số= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\)

Lấy tử số chia cho mẫu số:

     \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}}{2016.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\right)}\)

Đơn giản mẫu và tử.

     \(A=\frac{1}{2016}\)