Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)
S=1*2+2*3+3*4+...+99*100
3S=3*(1*2+2*3+3*4+...+99*100)
3S=1*2*3+2*3*3+3*4*3+...+99*100*3
3S=1*2*(3-0)+2*3*(4-1)+3*4*(5-2)+...+99*100*(101-98)
3S=1*2*3-1*2*0+2*3*4-2*3*1+3*4*5-3*4*2+...+99*100*101-99*100*98
3S=(1*2*3-2*3*1)+(2*3*4-3*4*2)+...+(98*99*100-99*100*98)+99*100*101
3S=0+0+...+0+999900
3S=999900
S=999900/3
S=333300
3S = 1.2.3 + 2.3.3 + 3.4.3 +...+99.100.3
=1.2.3 + 2.3.(4-1)+3.4(5-2)+...+99.100(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
= 99.100.101
=999900
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)
\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
\(2S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^8}\)
\(S=2S-S=3-\frac{3}{2^9}\)
Có S= 3/2 + 3/22 + 3/23 + ...+ 3/29 =>S*1/3 = 1/2 + 1/22 + 1/23 +...+ 1/29 =>S*1/3*2 = 1 + 1/2 + 1/22 +...+ 1/28 = S*2/3 => 2/3S - 1/3S = 1 + 1/2 + 1/22 +...+ 1/28 -(1/2 + 1/22 +...+ 1/29) => 1/3S = 1 + 1/2 + 1/22 +...+ 1/28 - 1/2 - 1/22 -...- 1/29 =>1/3S = 1 - 1/29 => S = 3 - 3/29