Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo bài này nà
https://olm.vn/hoi-dap/detail/214049743330.html
vào tkhđ của t sẽ thấy or ib đưa link nhé
Học tốt
\(S=1-3-3^2+...+3^{98}-3^{99}\)
\(S=\left(1-3+3^2-3^3\right)+...+\left(3^{36}-3^{37}+3^{38}-3^{39}\right)\)
\(S=-20+...+3^{36}.\left(-20\right)\)
\(S=-20\left(1+...+3^{36}\right)⋮\left(-20\right)\)
\(\Rightarrow-20\left(1+...+3^{36}\right)\)là bội của \(\left(-20\right)\)
\(\Rightarrow S\in B\left(20\right)\)
hok tốt!!
S=1-3+3^2-3^3+...+3^98-3^99
3S=3-3^2+3^3-3^4+...+3^99-3^100
3S+S=3-3^2+3^3-3^4+...+3^99-3^100+1-3+3^2-3^3+...+3^98-3^99
4S=-3^100+1
S=(-3^100+1):4
\(\Rightarrow3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(\Rightarrow S=\frac{3^{100}-1}{4}\)
Ta có: \(S=1-3+3^2-3^3+3^4-...-3^{97}+3^{98}-3^{99}\)( bài cho )
\(\Rightarrow3S=3-3^2+3^3-3^4+3^5-...-3^{98}+3^{99}-3^{100}\)
\(\Rightarrow3S+S=1-3^{100}\)
\(\Rightarrow4S=1-3^{100}\)
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
Vậy \(S=\frac{1-3^{100}}{4}\)
a) S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + ... + ( 396 - 397 + 398 - 399 )
S = ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + ... + 396 ( 1 - 3 + 32 - 33 )
S = ( 1 - 3 + 32 - 33 ) ( 1 + 34 + ... + 396 )
S = ( 1 + 34 + .... + 396 ) \(⋮\)-20
Suy ra S là B(-20)
b) S = 1 - 3 + 32 - 33 + .... + 398 - 399
3S = 3 - 32 + 33 - 34 + ... + 399 - 3100
4S = 1 - 3100
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
vì S là 1 số nguyên nên \(1-3^{100}⋮4\) \(\Rightarrow\)3100 chia 4 dư 1
a) \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\) có 100 số hạng
\(=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\) có 25 nhóm
\(=\left(-20\right)+\left(-20\right).3^4+...+\left(-20\right).3^{96}\)
\(=\left(-20\right).\left(1+3^4+...+3^{96}\right)⋮\left(-20\right)\)
=> S là B(-20)
b) Từ câu a
=> \(3^4.S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)\)
=> \(3^4.S-S=\left(-20\right).\left(3^4+3^8+...+3^{96}+3^{100}\right)-\left(-20\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
=> \(\left(3^4-1\right)S=\left(-20\right)\left(3^{100}-1\right)\)
=> \(80S=-20.\left(3^{100}-1\right)\)
=> \(S=-\frac{3^{100}-1}{4}\) mà S là số nguyên
=> \(3^{100}-1⋮4\)=> 3^100 : 4 dư 1
Ta có: \(3S=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\)
\(\Rightarrow4S=\left(1-3+3^2-3^3+3^4-...+3^{98}-3^{99}\right)+\left(3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}\right)\)
\(\Rightarrow4S=1-3^{100}\)
\(\Rightarrow S=\frac{1-3^{100}}{4}\)
S = 1 - 3 + 32 - 33 + 34 - .... + 398 - 399
=1 -3.(1-3+32-33+34-...+398-399+399)
=1-3(1 - 3 + 32-33+34-...+398-399)-3.399
=1-3S-3100
=>S+3S=1-3100
=>4S=1-3100
=>S=(1-3100)/4