K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6

S = 1 - 2 + 3 - 4 + 5 - 6 +...+ 199 - 200 + 201

Xét dãy số: 1; 2; 3; 4; 5...;200; 201

Dãy số trên là dãy số cách đều với khoảng cách là:

2 - 1 = 1

Số số hạng của dãy số trên là:

(201 - 1) : 1 + 1 = 201 (số)

Vì 201 : 2 = 100 dư 1

Nhóm hai số hạng liên tiếp của S vào một nhóm khi đó: S là tổng của 100 nhóm và 201

Giá trị của mỗi nhóm là:

1 - 2 = - 1

S = -1 x 100 + 201

S = - 100 + 201

S = 101


24 tháng 6

Tử của chữ số 0,3,5,7

27 tháng 9 2021

các bạn giúp mình với

27 tháng 9 2021

Viết rõ đầu bài ra đi em . chứ nhìn ko hiểu j cả

DD
28 tháng 9 2021

\(B=3^2+3^3+...+3^{99}\)

\(3B=3^3+3^4+...+3^{100}\)

\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)

\(2B=3^{100}-3^2\)

\(B=\frac{3^{100}-9}{2}\)

\(2B+9=3^{2n+4}\)

\(\Leftrightarrow3^{2n+4}=3^{100}\)

\(\Leftrightarrow2n+4=100\)

\(\Leftrightarrow n=48\).

19 tháng 11 2015

câu hỏi hay nhưng khó quá

19 tháng 11 2015

Nguyễn Ngọc Sáng nói chí lí

5 tháng 2 2016

1) -a-(b-a-c)= -a-b+a+c = b+c

b) -1000

5 tháng 2 2016

1/ = (-a) - b + a + c 

2/ = -2 + -2 + .....+ -2 (500 số -2 )

    = -2 . 500 = -1000

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

DD
11 tháng 5 2021

\(A=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{n\left(n+5\right)}\)

\(A=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{n\left(n+5\right)}\right)\)

\(A=\frac{1}{5}\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{n+5-n}{n\left(n+5\right)}\right)\)

\(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+5}\right)\)

\(A=\frac{1}{5}\left(1-\frac{1}{n+5}\right)\)

\(A=\frac{n+4}{5n+25}\)

DD
11 tháng 5 2021

\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(3B=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)

\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(3B=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

\(3B=n\left(n+1\right)\left(n+2\right)\)

\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

NM
22 tháng 10 2021

ta có :

\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)

b. ta có :

\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)

\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)

23 tháng 3
b B) 123,8 34,15 12, 49 5,85 2,49 10, 2

cíu làm giúp với >=D.

29 tháng 4 2018

â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)

              \(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)

               \(\Leftrightarrow2n-1⋮n+1\)khi  \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\)                            \

                \(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)

                 \(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)

Vậy \(n\in\left(-4;-2;0;2\right)\)

b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)

               \(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)

               \(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)

               \(\Rightarrow3n-2\in U\left(11\right)\)

               \(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)

               \(\Rightarrow n\in\left(-3;1;\right)\)

Phần c) bạn tự  làm nhé!