Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(d=\left(3n-2,4n-3\right)\).
Suy ra \(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow4\left(3n-2\right)-3\left(4n-3\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(4n+1,6n+1\right)\).
Suy ra \(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow3\left(4n+1\right)-2\left(6n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
Ta có \(\frac{3n-5}{n+4}=\frac{\left(3n+12\right)-17}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên thì \(\frac{3n-5}{n+4}\)là số nguyên
Tương đương với \(3-\frac{17}{n+4}\) là số nguyên hay \(\frac{17}{n+4}\) là số nguyên
\(=>17⋮n+4=>n+4\inƯ\left(17\right)=\left\{17;1;-1;-17\right\}\)
\(=>n\in\left\{13;-3;-5;-21\right\}\)(th n thuôc Z)
\(3x-5=3x-5+12-12=3x+12-5-12=3x+12-17\)
đến đây mình dùng công thức \(ab+ac=a\left(b+c\right)\)
ta có \(3x+12-17=3.x+3.4-17=3\left(x+4\right)-17\)
thì đương nhiên \(\frac{3\left(x+4\right)-17}{x+4}=\frac{3\left(x+4\right)}{x+4}-\frac{17}{x+4}=3-\frac{17}{x+4}\)
xong rồi đấy bạn ( bạn ấy nhờ mình giải thích chỗ này nhé )
A = 1.3+2.4+3.5 + ... + 99.101
<=> A= (2-1).(2+1)+(3-1).(3-1)+(4-1).(4+1)+...+(100-1).(100+1)
<=> A= 22 -1+32-1+42-1+....+1002-1
<=> A=(22+32+42+...+1002)-(1+1+1+1+...+1)
<=>A=(22+32+42+....+1002)-99
Và kết quả cuối cùng đó chính là 338250
Bài này vẫn còn 1 cách nữa nhưng cách đó dài quá nên mình làm hơi vắn tắt xíu
Ta có:
+) \(\frac{2013.2012-1}{2013.2012}=1-\frac{1}{2013.2012}\)
+) \(\frac{2012.2011-1}{2012.2011}=1-\frac{1}{2012.2011}\)
Vì \(\frac{1}{2013.2012}< \frac{1}{2012.2011}\Rightarrow1-\frac{1}{2013.2012}>1-\frac{1}{2012.2011}\)
Vậy \(\frac{2013.2012-1}{2013.2012}>\frac{2012.2011-1}{2012.2011}\)
\(S=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}\)
\(S=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\right)\)
\(S=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(S=\frac{1}{2}\cdot\frac{32}{99}\)
\(S=\frac{16}{99}\)
Bài 1:Sốọc sinh = Số bài kiểm tra
Số bài đạt điểm giỏi là: 45 x 1/3 = 15
Số bạn đạt điểm trung bình là: (45-15) x 9/10 = 27 (bạn)
Bài 2: Ta có: 35% = 7/20
Số học sinh lớp 6A có là: 120 x 7/20 = 42(học sinh)
Số học sinh lớp 6B có là: 42 x 20/21 = 20 (học sinh)
Bài 3: Ta có: 150% = 3/2
Số tuổi của em là: 4: (3-2) x 2= 2(tuổi)
Số tuổi của anh là: 4+2 = 6 (tuổi)
Bài 2 : Giải :
Số học sinh lớp 6a là :
120 x 35% = 42 ( học sinh )
Số học sinh lớp 6b là :
42 x 20/21 = 40 (học sinh )
Số học sinh lớp 6c là :
120 - ( 42 + 40 ) = 38 ( học sinh )
a) 3n + 5 chia hết cho n+1
ta có 3n+5=3n+3+2=3.(n+1)+2
vì 3.(n+1) chia hết cho n+1 =>để 3.(n+1)+2 chia hết cho n+1 thì 2 phải chia hết cho n+1
=> n+1 thuộc {1;2} =>n thuộc {0;1}
b) 3n + 5 chia hết cho 2n+1
ta có: 3n+5=2n+n+1+4=(2n+1)+(n+4)
vì 2n+1 chia hết cho 2n+1 =>để (2n+1)+(n+4) chia hết cho 2n+1 thì (n+4) phải chia hết cho 2n +1
=>n+4>=2n+1
n+1+3 >=n+n+1
3>=n =>n thuộc {0;1;2;3}
* với n=0 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn
* với n=1 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn
c) 2n + 3 chia hết cho 5 - 2n
để 5-2n >=0 =>5-2n >=5-5 =>2n <=5 => n thuộc{0;1;2}
* với n=0 =>2n+3 =3 ; 5-2n=5 không thỏa mãn
*với n=1 =>2n+3=5 ;5 -2n=3 không thỏa mãn
*với n=2 =>2n+3=7 ; 5-2n =1 thỏa mãn vì 2n + 3 chia hết cho 5 - 2n
vậy n=3
Ta có :
S = 1 - 2 + 3 - 4 + .... + 2005 - 2006
= ( 1- 2 ) + ( 3 - 4 ) + ... + ( 2005 - 2006 )
= - 1 + -1 + .... + -1
= - [(-1) . 1003 ) ( Vì 2006 : 2 = 1003 )
= - 1003
S = 1 - 2 + 3 - 4 +. . . . + 2005 - 2006
S = (1-2) + (3-4) + . . . . + (2005-2006)
S = -1 + (-1) + . . . . + (-1) có 1003 số -1
S = -1 . 1003
S = -1003