K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

Đáp án C

Diện tích của tam giác đều có cạnh là a bằng 

Ta có: 

23 tháng 11 2017

26 tháng 12 2018

21 tháng 8 2023

Diện tích mặt đáy là:\(\dfrac{a^2.\sqrt{3}}{4}\)

Thể tích khối lăng trụ là: \(a.\dfrac{a^2.\sqrt{3}}{4}=\dfrac{a^3.\sqrt{3}}{4}\)

\(\Rightarrow A\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Gọi \(M\) là trung điểm của \(BC\), \(O\) là trọng tâm tam giác \(ABC\).

\( \Rightarrow SO \bot \left( {ABC} \right)\)

Tam giác \(ABC\) đều

\( \Rightarrow AM = \frac{{AB\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2} \Rightarrow AO = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}\)

Tam giác \(SAO\) vuông tại \(O \Rightarrow SO = \sqrt {S{A^2} - A{O^2}}  = \frac{{a\sqrt 6 }}{3}\)

\(\begin{array}{l}{S_{\Delta ABC}} = \frac{{A{B^2}\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{4}\\{V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SO = \frac{{{a^3}\sqrt 2 }}{{12}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Diện tích đáy lớn là: \(S = \frac{{{{\left( {2{\rm{a}}} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Diện tích đáy bé là: \(S' = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích của bồn chứa là: \(V = \frac{1}{3}.\frac{{a\sqrt 6 }}{3}\left( {{a^2}\sqrt 3  + \sqrt {{a^2}\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4}}  + \frac{{{a^2}\sqrt 3 }}{4}} \right) = \frac{{7\sqrt 2 }}{{12}}{a^3}\)

Chọn C.

21 tháng 8 2018

6 tháng 12 2023

Do các cạnh của hình hộp chữ nhật là một cấp số nhân nên đặt q là công bội của cấp số nhân ta có lần lượt các cạnh là: \(x;xq;xq^2\) 

Theo đề bài ta có: \(\left\{{}\begin{matrix}x\cdot xq\cdot xq^2=a^3\\2\cdot x\cdot\left(xq+xq^2\right)+2\cdot xq\cdot xq^2=2ma^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3q^3=a^3\\2x\cdot\left(xq+xq^2\right)+2x^2q^3=2ma^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xq=a\\2xq\left(x+xq\right)+2x^2q^3=2ma^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xq=a\\2a\left(x+a\right)+2a^2q=2ma^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xq=a\\2ax+2a^2+2a^2q=2ma^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xq=a\\ax+a^2+a^2q=ma^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xq=a\\x+a+aq=ma\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot aq=a^2\\x+aq=a\left(m-1\right)\end{matrix}\right.\)

Khi đó x và aq chính là nghiệm của pt: 

\(t^2-a\left(m-1\right)t+a^2=0\)

\(\sqrt{\Delta}=\sqrt{\left[-a\left(m-1\right)\right]^2-4\cdot1\cdot a^2}=\sqrt{a^2\left(m^2-2m+1\right)-4a^2}\\ =\sqrt{a^2m^2-2ma^2+a^2-4a^2}=a\sqrt{m^2-2m-3}\\ =a\sqrt{\left(m-3\right)\left(m+1\right)}\)

\(\Leftrightarrow\left[{}\begin{matrix}t_1=\dfrac{a\left(m-1\right)+a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\\t_2=\dfrac{a\left(m-1\right)-a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\end{matrix}\right.\) 

Với \(\left\{{}\begin{matrix}x=\dfrac{a\left(m-1\right)+a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\\aq=\dfrac{a\left(m-1\right)-a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{a\left(m-1\right)+a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\\q=\dfrac{\left(m-1\right)-\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\end{matrix}\right.\) 

\(\Rightarrow x+xq+xq^2=....\) 

Với: \(\left\{{}\begin{matrix}x=\dfrac{a\left(m-1\right)-a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\\aq=\dfrac{a\left(m-1\right)+a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{a\left(m-1\right)-a\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\\q=\dfrac{\left(m-1\right)+\sqrt{\left(m+1\right)\left(m-3\right)}}{2}\end{matrix}\right.\)

\(\Rightarrow x+xq+xq^2=...\)

15 tháng 8 2023

Thể tích:\(V=a^2.3a=3a^3\)

\(\Rightarrow B\)