Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\RightarrowĐPCM\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
Đặt `A= 1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100)`
`3A= 3. (1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100))`
`3A= 1 + 1/3 + 1/(3^2) + ... + 1/(3^98) + 1/(3^99)`
`3A - A = (1 + 1/3 + 1/(3^2)+... + 1/(3^98) + 1/(3^99)) - (1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100))`
`2A = 1 - 1/(3^100)`
`A = (1 - 1/(3^100))/2`
Vậy: `1/3 + 1/(3^2) + 1/(3^3) + ... + 1/(3^99) + 1/(3^100) = (1-1/(3^100))/2`
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) + ... + \(\dfrac{1}{3^{99}}\) + \(\dfrac{1}{3^{100}}\)
3A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{3^{98}}\) + \(\dfrac{1}{3^{99}}\)
3A - A = (1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + ...+\(\dfrac{1}{3^{98}}\) + \(\dfrac{1}{3^{99}}\)) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+..+\(\dfrac{1}{3^{99}}\)+\(\dfrac{1}{3^{100}}\))
A.(3 - 1) = 1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+..+\(\dfrac{1}{3^{98}}\)+ \(\dfrac{1}{3^{99}}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}\) - ...- \(\dfrac{1}{3^{99}}\) - \(\dfrac{1}{3^{100}}\)
A x 2 = (1 - \(\dfrac{1}{3^{100}}\)) + (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3^{98}}\) - \(\dfrac{1}{3^{98}}\)) + (\(\dfrac{1}{3^{99}}\) - \(\dfrac{1}{3^{99}}\))
A x 2 = 1 - \(\dfrac{1}{3^{100}}\) + 0 + 0 + ..+ 0
A x 2 = 1 - \(\dfrac{1}{3^{100}}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{100}}\)