Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/1.4 + 5/4.7 + 5/7.10 + ..... + 5/22.25
= 5/3 . ( 5/1.4 + 5/4.7 + 5/7.10 + ..... + 5/22.25 )
= 5/3 . ( 1/1 - 1/4 + 1/4 - 1/5 + 1/5 - ....... + 1/22 - 1/25 + 1/25 )
= 5/3 . ( 1/1 - 1/25 )
= 5/3 . 24/25
= 8/5
chắc thế bạn ạ
Đặt A=(đa thức trên)
Có A=5(1/1.4+1/4.7+...+1/22.25)
=> A=5/3.(1-1/4+1/4-1/7+1/7-...+1/22-1/25)
=> A=5/3.(1-1/25)
=> A= 5/3.24/25
=> A= 8/5
Đặt biểu thức trên là A. Ta có:
3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/2016/2019
3A = 1-1/4 +1/4-1/7+1/7-1/10/+ ... + 1/2016-1/2019
3A = 1-1/2019=2018/2019
A =1009/2019
Ta có:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2016}-\frac{1}{2019}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{2019}\right)\)
\(=\frac{1}{3}.\frac{2018}{2019}\)
\(=\frac{2018}{6057}\)
C = 2/1.4 + 2/4.7 + 2/7.10 + .... + 2/601.604
C = 2/3 . ( 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/601.604 )
C = 2/3 . ( 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/601 - 1/604 )
C = 2/3 . ( 1 - 1/604 )
C = 2/3 . 603/604
C = 201/302
\(C=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+.....+\frac{2}{601.604}=\frac{2}{3}\cdot\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{601.604}\right)=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{601}-\frac{1}{604}\right)\)=\(\frac{2}{3}\cdot\left(1-\frac{1}{604}\right)=\frac{2}{3}\cdot\frac{603}{604}=\frac{201}{302}\)
\(B=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{2}{3}\left(1-\frac{1}{100}\right)\)
\(=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(B=\frac{2}{1.4}+\frac{2}{4.7}+...+\frac{2}{97.100}=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-...-\frac{2}{100}\right)\)
\(B=\frac{1}{3}.\left(2-\frac{2}{100}\right)=\frac{1}{3}.\frac{99}{50}==\frac{33}{50}\)
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\left(x\ne0;x\ne-3\right)\)
\(\Leftrightarrow\dfrac{x+3-1}{x+3}=\dfrac{3.125}{376}\Leftrightarrow\dfrac{x+2}{x+3}=\dfrac{3.125.}{376}.\dfrac{\left(x+3\right)}{x+3}\)
\(\Leftrightarrow376\left(x+2\right)=3.125.\left(x+3\right)\)
\(\Leftrightarrow376x+752=375x+1125\)
\(\Leftrightarrow376x-375x=1125-752\Leftrightarrow x=373\left(x\in N^{\cdot}\right)\)
\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{33}{50}\)
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\left(1-\frac{1}{100}\right)\)
\(A=\frac{2}{3}.\frac{99}{100}\)
\(\Rightarrow A=\frac{33}{50}\)
\(A=1.4+4.7+7.10+....+97.100\)
\(2A=2.8+8.14+14.20+...+194.200\)
\(2A=2\left(1.4+4.7+7.10+...+97.100\right)\)
\(2A-A=2\left(1.4+4.7+...+97.100\right)-\left(1.4+4.7+...+97.100\right)\)
\(\Rightarrow A=2\)
Vậy.....
`#3107.101107`
1.
a)
`1/(1*4) + 1/(4*7) + 1/(7*10) + ... + 1/(100*103)`
`= 1/3 * (3/(1*4) + 3/(4*7) + 3/(7*10) + ... + 3/(100*103) )`
`= 1/3 * (1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)`
`= 1/3* (1 - 1/103)`
`= 1/3*102/103`
`= 34/103`
b)
`-1/3 + (-1/15) + (-1/35) + (-1/63) + ... + (-1/9999)`
`= - 1/3 - 1/15 - 1/35 - 1/63 - ... - 1/9999`
`= - (1/3 + 1/15 + 1/35 + ... + 1/9999)`
`= - (1/(1*3) + 1/(3*5) + 1/(5*7) + ... + 1/99*101)`
`= - 1/2 * (2/(1*3) + 2/(3*5) + 2/(5*7) + ... + 2/99*101)`
`= - 1/2* (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)`
`= -1/2 * (1 - 1/101)`
`= -1/2*100/101`
`= -50/101`
2.
`3/(1*4) + 3/(4*7) + ... + 3/(94*97) + 3/(97*100)`
`= 1 - 1/4 + 1/4 - 1/7 + ... + 1/94 - 1/97 + 1/97 - 1/100`
`= 1-1/100`
`= 99/100`
=> 9G=1.4.9+4.7.9+7.10.9+...+46.49.9
=2.4+1.4.7+4.7.10-1.4.7+7.10.13-4.7.10+10.13.16-7.10.13...46.49.52-43.46.49
=2.4+46.49.52
bn tự tính nhé
sửa \(\dfrac{2}{1.4}+\dfrac{2}{4.7}+...+\dfrac{2}{2022.2023}\)
\(=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2022}-\dfrac{1}{1023}\right)=\dfrac{2}{3}.\left(1-\dfrac{1}{2023}\right)=\dfrac{2.2022}{3.2023}=\dfrac{1348}{2023}\)