\(S_n=3+33+333+....\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Ta có : \(S=3\left(1+11+111+...+11...1\right)\) (n chữ số 1)

               \(=3\left(\frac{10-1}{9}+\frac{10^2-1}{9}+....\frac{10^n-1}{9}\right)=\frac{3}{9}\left(10+10^2+....+10^n-n\right)\)

              \(=\frac{1}{3}\left(10.\frac{10^n-1}{10-1}-n\right)=\frac{1}{27}\left(10^{n+1}-10-9n\right)\)

Tham khảo:

undefined

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

9 tháng 4 2017

a) Ta có:

b) Từ câu a) ta dự đoán (1), với mọi n ε N* .

Ta sẽ chứng minh đẳng thức (1) bằng phương pháp quy nạp

Khi n = 1, vế trái là , vế phải bằng . Vậy đẳng thức (1) đúng.

Giả sử đẳng thức (1) đúng với n = ≥ 1, tức là

Ta phải chứng minh nó cũng đúng khi n = k + 1, nh=ghĩa là phải chứng minh

Ta có

=

tức là đẳng thức (1) cũng đúng với n = k + 1.

Vậy điều cần chứng minh đúng với mọi n.

24 tháng 5 2017

a) \(u_n=u_1.q^{n-1}=u_1.2^{n-1}\)
\(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}=\dfrac{u_1\left(1-2^n\right)}{1-2}=u_1\left(2^n-1\right)\);
\(\dfrac{S_n}{u_n}=\dfrac{u_1\left(2^n-1\right)}{u_1.2^{n-1}}=\dfrac{2^n-1}{2^{n-1}}=2-\dfrac{1}{2^{n-1}}=\dfrac{63}{32}\)
Vì vậy \(\dfrac{1}{2^{n-1}}=\dfrac{1}{32}\) \(\Leftrightarrow\dfrac{1}{2^{n-1}}=\dfrac{1}{2^5}\)\(\Leftrightarrow n-1=5\Leftrightarrow n=6\).
b)
\(u_n=2.q^{n-1}=\dfrac{1}{8}\)\(\Rightarrow q^{n-1}=\dfrac{1}{16}\)
\(S_n=\dfrac{2\left(1-q^n\right)}{1-q}=\dfrac{2\left(1-q.q^{n-1}\right)}{1-q}=\dfrac{2\left(1-\dfrac{1}{16}q\right)}{1-q}=\dfrac{31}{8}\);
Suy ra \(q=-1\).

23 tháng 5 2017

a)
\(S_1=\dfrac{1}{1.5}=\dfrac{1}{5}\)
\(S_2=\dfrac{1}{1.5}+\dfrac{1}{5.9}=\dfrac{1}{4}\left(\dfrac{1}{1}-\dfrac{1}{5}\right)+\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{9}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}\right)=\dfrac{1}{4}\left(1-\dfrac{1}{9}\right)=\dfrac{2}{9}\).
\(S_3=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{13}\right)=\dfrac{3}{13}\).
\(S_4=\dfrac{1}{1.5}+\dfrac{1}{5.9}+\dfrac{1}{9.13}+\dfrac{1}{13.17}\)\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{17}\right)=\dfrac{4}{17}\).
b) Dự đoán công thức : \(S_n=\dfrac{1}{4}\left(1-\dfrac{1}{4n+1}\right)\).
Chứng minh bằng quay nạp:
Với \(n=1\): \(S_1=\dfrac{1}{1.5}=\dfrac{1}{5}\).
Vậy giả thiết quy nạp đúng với n = 1.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)\).
Ta sẽ chứng minh nó đúng với \(n=k+1\): \(S_{k+1}=\dfrac{1}{4}\left(1-\dfrac{1}{4\left(k+1\right)+1}\right)\)
Thật vậy:
\(S_{k+1}=S_k+\dfrac{1}{\left[4\left(k+1\right)-3\right].\left[4\left(k+1\right)+1\right]}\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{4\left(k+1\right)-3}-\dfrac{1}{4\left(k+1\right)+1}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{4k+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{4k+1}-\dfrac{1}{4\left(k+1\right)+1}\right)\)
\(=\dfrac{1}{4}\left(1-\dfrac{1}{4\left(k+1\right)+1}\right)\).
Vậy điều cần chứng minh đúng với mọi n.

9 tháng 4 2017

Các số hạng tổng lập thành cấp số nhân lùi vô hạn với u1 = -1 và q = - .

Vậy S = -1 + - + ... + + ... = = = .



26 tháng 5 2017

Các số hạng lập thành một số nhân với \(u_1=-1\)\(q=-\dfrac{1}{10}\).
Vậy:
\(S_n=-1+\dfrac{1}{10}-\dfrac{1}{10^2}+...+\dfrac{\left(-1\right)^n}{10^{n-1}}+...=\dfrac{u_1}{1-q_1}\)\(=\dfrac{-1}{1-\left(-\dfrac{1}{10}\right)}=\dfrac{-10}{11}\).

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

20 tháng 4 2016

Xét cấp số cộng (U\(_n\)) có u\(_1\)=105 và công sai d =5 ta đươc:

995=u\(_n\)=u\(_1\)+(n-1)d =105+5(n-1)\(\Leftrightarrow\)n=179

s=s\(_{179}\)=\(\frac{179}{2}\)(u\(_1\)+u\(_{179}\))=\(\frac{179}{2}\)(105+995)=98450

20 tháng 4 2016

Ta có : \(a_1=105;a_2=110\Rightarrow d=5;a_n=995\)

mà \(a_n=a_1+\left(n-1\right)d\Rightarrow995=105+\left(n-1\right)5\)

                                  \(\Rightarrow S=\frac{n\left(a_1+a_n\right)}{2}=98450\)