Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1;n\in Z^+\)
Khi n chẵn thì \(\left(-1\right)^n=1\)
=>\(u_n=cos\left(\dfrac{\Omega}{2n}\right)\)
=>\(0< =u_n< =1\)
=>\(\left(u_n\right)\) bị chặn ở khoảng [0;1]
Khi n lẻ thì \(\left(-1\right)^n=-1\)
=>\(u_n=-cos\left(\dfrac{\Omega}{2n}\right)\)
\(0< =cos\left(\dfrac{\Omega}{2n}\right)< =1\)
=>\(0>=-cos\left(\dfrac{\Omega}{2n}\right)>=-1\)
=>\(0>=u_n>=-1\)
=>\(\left(u_n\right)\) bị chặn ở khoảng [-1;0]
b: \(-1< =\dfrac{1}{5^n}< =0\)
=>\(-\sqrt{2}< =\dfrac{\sqrt{2}}{5^n}< =0\)
=>\(-\sqrt{2}< =t_n< =0\)
Vậy: Dãy số bị chặn ở khoảng \(\left[-\sqrt{2};0\right]\)
a) \(\forall n \in {\mathbb{N}^*}\) ta có:
\(\left. \begin{array}{l}0 \le {\sin ^2}\frac{{n\pi }}{3} \le 1\\ - 1 \le \cos \frac{{n\pi }}{4} \le 1\end{array} \right\} \Leftrightarrow 0 + \left( { - 1} \right) \le {\sin ^2}\frac{{n\pi }}{3} + \cos \frac{{n\pi }}{4} \le 1 + 1 \Leftrightarrow - 1 \le {a_n} \le 2\).
Vậy dãy số \(\left( {{a_n}} \right)\) bị chặn.
b) Ta có: \({u_n} = \frac{{6n - 4}}{{n + 2}} = \frac{{6\left( {n + 2} \right) - 16}}{{n + 2}} = 6 - \frac{{16}}{{n + 2}}\)
\(\forall n \in {\mathbb{N}^*}\) ta có:
\(n + 2 > 0 \Leftrightarrow \frac{{16}}{{n + 2}} > 0 \Leftrightarrow 6 - \frac{{16}}{{n + 2}} < 6 \Leftrightarrow {u_n} < 6\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.
\(n \ge 1 \Leftrightarrow n + 2 \ge 1 + 2 \Leftrightarrow n + 2 \ge 3 \Leftrightarrow \frac{{16}}{{n + 2}} \le \frac{{16}}{3} \Leftrightarrow 6 - \frac{{16}}{{n + 2}} \ge 6 - \frac{{16}}{3} \Leftrightarrow {u_n} \ge \frac{2}{3}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.
Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.
\(x_{n+1}=\dfrac{1}{2}x_n+2^{n-2}\Leftrightarrow x_{n+1}-\dfrac{1}{6}.2^{n+1}=\dfrac{1}{2}\left(x_n-\dfrac{1}{6}.2^n\right)\)
Đặt \(x_n-\dfrac{1}{6}.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=x_1-\dfrac{1}{6}.2^1=\dfrac{8}{3}\\y_{n+1}=\dfrac{1}{2}y_n\end{matrix}\right.\)
\(\Rightarrow y_n\) là CSN với công bội \(q=\dfrac{1}{2}\)
\(\Rightarrow y_n=\dfrac{8}{3}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{4}{3.2^n}\)
\(\Rightarrow x_n=y_n+\dfrac{1}{6}.2^n=\dfrac{4}{3.2^n}+\dfrac{2^n}{6}\)