K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

Nguyễn Việt Lâm

16 tháng 12 2020

Có 4 cách chọn chữ số hàng đơn vị

\(A^4_7\) cách chọn và sắp xếp 4 chữ số còn lại

=> Có \(4A^4_7=3360\) số được tạo thành.

22 tháng 6 2018

Gọi   là số cần lập .

Vì x là số chẵn nên e {0; ;2; 4; 6}. Ta xét các trường hợp sau

 e = 0 ⇒ e có 1 cách chọn

Số cách chọn  là một chỉnh hợp của 6 phần tử

Số cách chọn các chữ số còn lại là   

Do đó trường hợp này có tất cả    số

 e 0 ⇒ e có 3 cách chọn

Với mỗi cách chọn e ta có a A \ {0;e} nên có 5 cách chọn a.

Số cách chọn các số còn lại là:  

Do đó trường hợp này có tất cả   số

Vậy có tất cả: 360 + 900 = 1260 số thỏa yêu cầu bài toán.

Chọn A.

23 tháng 11 2016

1. 5/42

2. 1/5

3. 12960

ok

23 tháng 11 2016

3. 2592 mới đúng

1,2 hình như cũng sai rồi

 

NV
22 tháng 11 2021

Ta có \(1+2+3+4+5=15\) và \(3+4+5+6+7=25\) nên tổng các chữ số của số được lập luôn nằm giữa 15 và 25

Mà số đó chia hết cho 9 nên tổng 5 chữ số phải là 18 (là số duy nhất nằm giữa 15 và 25 và chia hết cho 9)

Các bộ số thỏa mãn có tổng 18: \(\left(1;2;4;5;6\right);\left(1;2;3;5;7\right)\)

Số số được lập: \(3.4!+1.4!=96\) số

14 tháng 11 2018