Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi là số cần lập với đôi một khác nhau .
Vì x là số lẻ nên d có 3 cách chọn.
Với mỗi cách chọn d ta có a ∈ A \ {0;d} nên a có cách chọn
Với mỗi cách chọn a;d ta có cách chọn bc
Theo quy tắc nhân ta có: số thỏa yêu cầu bài toán
Chọn A.
Gọi .Để lập ta chọn các số a;b;c;d;e theo thứ tự sau:
Chọn a: Vì a ∈ A; a ≠ 0 nên có 6 cách chọn a
Với mỗi cách chọn a ta thấy mỗi cách chọn b;c;d chính là một cách lấy ba phần tử của tập và xếp chúng theo thứ tự, nên mỗi cách chọn b;c;d ứng với một chỉnh hợp chập 3 của 6 phần tử
Suy ra số cách chọn b;c;d là:
Theo quy tắc nhân ta có: số thỏa yêu cầu bài toán.
Chọn B.
a. Gọi số đó là \(\overline{ab}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)
Theo quy tắc nhân ta có: \(5.5=25\) số
b. Gọi số đó là \(\overline{abc}\)
a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)
Có: \(5.5.4=100\) số
c. Gọi số đó là \(\overline{abcd}\)
Do số chẵn nên d chẵn
- TH1: \(d=0\) (1 cách chọn d)
a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow1.5.4.3=60\) số
- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn
d.
Gọi số đó là \(\overline{abcde}\)
Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)
a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách
\(\Rightarrow3.4.4.3.2=288\) số
Gọi
Để lập ta chọn các số a;b;c;d;e theo thứ tự sau:
Chọn a: Vi a ∈ A; a ≠ 0 nên ta có cách chọn a
Vì b ∈ A và b có thể trùng với a nên với mỗi cách chọn a ta có cách chọn b
Tương tự : với mỗi cách chọn a;b có cách chọn c
với mỗi cách chọn a;b;c có cách chọn d
với mỗi cách chọn a;b;c;d có cách chọn e
Vậy theo quy tắc nhân ta có: 6.7.7.7.7 = 14406 số thỏa yêu cầu bài toán.
Chọn A.
Gọi là số cần lập .
Vì x là số chẵn nên e ∈ {0; ;2; 4; 6}. Ta xét các trường hợp sau
e = 0 ⇒ e có 1 cách chọn
Số cách chọn là một chỉnh hợp của 6 phần tử
Số cách chọn các chữ số còn lại là
Do đó trường hợp này có tất cả số
e ≠ 0 ⇒ e có 3 cách chọn
Với mỗi cách chọn e ta có a ∈ A \ {0;e} nên có 5 cách chọn a.
Số cách chọn các số còn lại là:
Do đó trường hợp này có tất cả số
Vậy có tất cả: 360 + 900 = 1260 số thỏa yêu cầu bài toán.
Chọn A.