\(\sqrt{x^2-9}\left(\frac{3x-1}{x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2019

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\); \(x\ne-5\)

Nhận thấy \(x=\pm3\) là 2 nghiệm của BPT đã cho

- Với \(x\ne\pm3\), do \(\sqrt{x^2-9}>0\), chia 2 vế của BPT cho \(\sqrt{x^2-9}\) được:

\(\frac{3x-1}{x+5}\le x\Leftrightarrow\frac{3x-1}{x+5}-x\le0\Leftrightarrow\frac{3x-1-x\left(x+5\right)}{x}\le0\)

\(\Leftrightarrow\frac{-x^2-2x-1}{x}\le0\Leftrightarrow\frac{\left(x+1\right)^2}{x}\ge0\) \(\Rightarrow\left[{}\begin{matrix}x>0\\x=-1\end{matrix}\right.\)

Kết hợp điều kiện xác định ta được: \(\left[{}\begin{matrix}x=-1\\x\ge3\end{matrix}\right.\)

\(x\in\left[-5;5\right]\Rightarrow x=\left\{-3;-1;3;4;5\right\}\)

\(\Rightarrow\sum x=8\)

28 tháng 6 2020

Đáp án bạn làm bị sai rồi nhé. Bạn sai ngay chỗ quy đồng mẫu. Đáng ra mẫu phải là (x+5) nhưng bạn lại để là xChương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

NV
29 tháng 4 2020

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\) ; \(x\ne-5\)

- Với \(x=\pm3\) thỏa mãn

- Với \(x\ne\pm3\)

\(\Leftrightarrow\frac{3x-1}{x+5}\le x\Leftrightarrow x-\frac{3x-1}{x+5}\ge0\)

\(\Leftrightarrow\frac{x^2+2x+1}{x+5}\ge0\Leftrightarrow\frac{\left(x+1\right)^2}{x+5}\ge0\)

\(\Rightarrow x>-5\)

Vậy nghiệm của BPT trên \(\left[-5;5\right]\) là: \(\left[{}\begin{matrix}-5< x\le-3\\3\le x\le5\end{matrix}\right.\)

Tính tổng nghiệm hay tổng nghiệm nguyên?

Tổng nghiệm là \(\sum x=5\)

29 tháng 4 2020

tổng nghiệm nguyên b

23 tháng 3 2020
https://i.imgur.com/fsZFwJd.jpg
NV
23 tháng 5 2019

ĐKXĐ: \(9-x^2>0\Rightarrow-3< x< 3\)

\(\frac{\left(x^2-3x\right)\sqrt{9-x^2}}{\sqrt{9-x^2}}\ge0\Leftrightarrow x^2-3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\x\ge3\end{matrix}\right.\)

Kết hợp ĐKXĐ ta được nghiệm của BPT: \(-3< x\le0\)

8 tháng 4 2017

a) Gọi D là điều kiện xác định của biểu thức vế trái D = [- 8; +∞]. Vế trái dương với mọi x ∈ D trong khi vế phải là số âm. Mệnh đề sai với mọi x ∈ D. Vậy bất phương trình vô nghiệm.

b) Vế trái có ≥ 1 ∀x ∈ R,

≥ 1 ∀x ∈ R

=> + ≥ 2 ∀x ∈ R.

Mệnh đề sai ∀x ∈ R. Bất phương trình vô nghiệm.

c) ĐKXĐ: D = [- 1; 1]. Vế trái âm với mọi x ∈ D trong khi vế phải dương.

NV
1 tháng 3 2020

1. \(\Leftrightarrow\left(3x-1\right)\left(\sqrt{5}x-2\right)\ge0\Rightarrow\left[{}\begin{matrix}x\le\frac{1}{3}\\x\ge\frac{2}{\sqrt{5}}\end{matrix}\right.\)

2. \(\Leftrightarrow\frac{\left(3-2x\right)\left(3+2x\right)}{2x-3}\ge0\Leftrightarrow\left[{}\begin{matrix}x\ne\frac{3}{2}\\x\le-\frac{3}{2}\end{matrix}\right.\)

3. \(\left|x-2\right|\ge3\Leftrightarrow\left[{}\begin{matrix}x-2\ge3\\x-2\le-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge5\\x\le-1\end{matrix}\right.\)

4. \(\Leftrightarrow-10\le3x+1\le10\Rightarrow-\frac{11}{3}\le x\le3\)

5. \(\Leftrightarrow\frac{3x^2-x+2}{x^2-9}-3\le0\Leftrightarrow\frac{-x+29}{\left(x-3\right)\left(x+3\right)}\le0\Rightarrow\left[{}\begin{matrix}-3< x< 3\\x\ge29\end{matrix}\right.\)

6. \(\Leftrightarrow\frac{4}{\left(x-2\right)^2}+\frac{1}{x-2}>0\Leftrightarrow\frac{x+2}{\left(x-2\right)^2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge-2\\x\ne2\end{matrix}\right.\)

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0