Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a/ \(x\ge-11\)
Đặt \(\sqrt{x+11}=a\ge0\Rightarrow11=a^2-x\), pt đã cho trở thành:
\(x^2+a=a^2-x\Leftrightarrow x^2-a^2+x+a=0\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)
TH1: \(x+a=0\Leftrightarrow x+\sqrt{x+11}=0\Leftrightarrow-x=\sqrt{x+11}\)
\(\Leftrightarrow\left[{}\begin{matrix}-x\ge0\\x^2=x+11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le0\\x^2-x-11=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-3\sqrt{5}}{2}\)
TH2: \(x-a+1=0\Leftrightarrow x+1=\sqrt{x+11}\) \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\\left(x+1\right)^2=x+11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2+x-10=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{41}}{2}\)
b/ \(\sqrt{9+x}=x-9\Leftrightarrow\left\{{}\begin{matrix}x-9\ge0\\9+x=\left(x-9\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge9\\x^2-19x+72=0\end{matrix}\right.\) \(\Rightarrow x=\frac{19+\sqrt{73}}{2}\)
Câu 2:
a/
\(f\left(x\right)=\frac{\left(x-1\right)\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-1\right)\left(x-4\right)}=\frac{\left(x+1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x-4\right)}\)
Lập bảng xét dấu ta được:
\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -1\\x>4\\1< x< 3\end{matrix}\right.\)
\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-1< x< 1\\3< x< 4\end{matrix}\right.\)
\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
\(f\left(x\right)\) ko xác định tại \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
b/ \(h\left(x\right)=\frac{-x^2+3x-1}{\left(x^2-2x+3\right)\left(x+2\right)}\)
Lập bảng xét dấu ta được:
\(f\left(x\right)>0\) khi \(\left[{}\begin{matrix}x< -2\\\frac{3-\sqrt{5}}{2}< x< \frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
\(f\left(x\right)< 0\) khi \(\left[{}\begin{matrix}-2< x< \frac{3-\sqrt{5}}{2}\\x>\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
\(f\left(x\right)=0\) tại \(x=\frac{3\pm\sqrt{5}}{2}\)
\(f\left(x\right)\) ko xác định tại \(x=-2\)
\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)
do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương
\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)
TH(1) x<3 <=>3-x>5-2x=> x>2
Kết luận(1) \(2< x< 3\)
TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)
Kết luận(2) \(x\ge3\)
(1)và(2) nghiệm của Bpt là: x>2