K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

B = 1+5+52+53+...+52009

5B = 5+52+53+54+...+52010

4B = 5B - B = 52010-1

B = \(\frac{5^{2010}-1}{4}\)

10 tháng 8 2015

5B=5+5^2+5^3+..+5^2010
-->5B-B=4B=(5^2010-1)
-->B=\(\frac{5^{2010}-1}{4}\)
______________________________

7 tháng 4 2019

\(B=1+5+5^2+5^3+....+5^{2009}\)

=> \(5B=5+5^2+5^3+5^4+....+5^{2010}\)

=> \(4B=5^{2010}-1\)

=> \(B=\frac{5^{2010}-1}{4}\)

Study well ! >_<

7 tháng 1 2018

\(a=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(5a=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

\(5a-a=\left(5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\right)-\left(1+5+5^2+5^3+...+5^{2008}+5^{2009}\right)\)

\(4a=5^{2010}-1\)

\(a=\dfrac{5^{2010}-1}{4}\)

8 tháng 1 2018

mơn bn nhiu ^^

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

Trừ theo vế:

\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)

\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)

Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)

\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)

Trừ theo vế:

\(3X-X=3^n-3^0=3^n-1\)

\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)

3 tháng 5 2016

nhân 5 lần lên:

5A=5+52+...+52010

=> 4A =5A-A= 52010-1  => A= (52010-1):4

3 tháng 5 2016

      5A = \(5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

        A = \(1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow\) 4A = \(5^{2010}-1\)

\(\Rightarrow\)   A = \(\frac{5^{2010}-1}{4}\)

Đúng thì cho mk biết nha

23 tháng 2 2020

\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)

\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)

\(4.A=5^{2010}-1\)

\(A=\frac{5^{2010}-1}{4}\)

\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)

\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)

\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)

\(3.B=2^{101}+2^2 \)

\(B=\frac{2^{101}+2^{2}}{3}\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)

\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)

\(C=0\)

Tick cho mình nha!!!

Chúc bạn học tốt!

23 tháng 2 2020

Mình làm mất hơn 1 tiếng đó!

20 tháng 6 2016

a)(-7 / 5 + 3 / 8 ) : 2009 / 2010 + (-3 / 5+5 / 8) : 2009 / 2010

=[ (-7 / 5 + 3 / 8 ) + (-3 / 5+5 / 8) ] : 2009/2010

=[ -7/5 +3/8 + (-3)/5+5/8 ] : 2009/2010

=[ (-7/5 + (-3)/5) + (3/8 + 5/8) ] :2009/2010

=[-2+1] : 2009/2010

=-1 :2009/2010

=-2009/2010

b)\(\frac{9^8\cdot4^3}{27^4\cdot6^5}=\frac{\left(3^2\right)^8\cdot\left(2^2\right)^3}{\left(3^3\right)^4\cdot\left(2\cdot3\right)^5}=\frac{3^{16}\cdot2^6}{3^{12}\cdot2^5\cdot3^5}=\frac{3^{16}\cdot2^5\cdot2}{3^{16}\cdot3^1\cdot2^5}=\frac{2}{3^1}=\frac{2}{3}\)

23 tháng 3 2020

1 + 5 + 52 + 53 + 54 + ....+ 52015

Đặt A= 1 + 5 + 52 + 53 + 54 + ....+ 52015

5A= 5 ( 1 + 5 + 52 + 53 + 54 + ....+ 52015)

5A=  5 + 52 + 53 + 54 + ....+ 52015+52016

5A- A= ( 5 + 52 + 53 + 54 + ....+ 52015+52016) -( 1 + 5 + 52 + 53 + 54 + ....+ 52015)

4A= 52016-1

A= (52016-1) :4

Vậy...