Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(\Rightarrow E=\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{15.16}\)
\(E=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(E=2.\frac{3}{16}=\frac{3}{8}\)
\(E=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(E=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(E=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(E=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(E=2.\frac{3}{16}\)
\(E=\frac{3}{8}\)
\(A=\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}\)
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+\frac{4}{4.5}+\frac{4}{5.6}+\frac{4}{6.7}\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=4\left(1-\frac{1}{7}\right)\)
\(A=4.\frac{6}{7}\)
\(A=\frac{24}{7}\)
\(A=\frac{4}{2}+\frac{4}{6}+\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+\frac{4}{42}=4\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=4\left(1-\frac{1}{7}\right)=\frac{6}{7}.4=\frac{24}{7}\)
\(B1\)
\(=\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{37}-\frac{1}{38}-\frac{1}{39}\)
\(=1-\frac{1}{39}\)
\(=\frac{38}{39}\)
\(B2\)
\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+.....+\frac{1}{99\cdot100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+......+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25}{100}-\frac{1}{100}\)
\(=\frac{24}{100}\)
\(=\frac{6}{25}\)
Bài 1 :
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(=\frac{1}{1.2}-\frac{1}{38.39}\)
\(=\frac{370}{741}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)\)
\(A=1-\frac{1}{9}=\frac{8}{9}\)
A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=1\(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
=1-\(\frac{1}{9}=\frac{8}{9}\)
Vậy A=\(\frac{8}{9}\)
A=\(\frac{1}{2}\)+\(\frac{5}{6}\)+\(\frac{11}{12}\)+\(\frac{19}{20}\)+\(\frac{29}{30}\)+\(\frac{41}{42}\)=(1-\(\frac{1}{2}\))+(1-\(\frac{1}{6}\))+(1-\(\frac{1}{12}\))+(1-\(\frac{1}{20}\))+(1-\(\frac{1}{30}\))+(1-\(\frac{1}{42}\))
=1-1+\(\frac{1}{2}\)+1-\(\frac{1}{2}\)+\(\frac{1}{3}\)+1-\(\frac{1}{3}\)+\(\frac{1}{4}\)+1-\(\frac{1}{4}\)+\(\frac{1}{5}\)+1-\(\frac{1}{5}\)+\(\frac{1}{6}\)+1-\(\frac{1}{6}\)+\(\frac{1}{7}\)
=(1-1+1+1+1+1+1)+(\(\frac{1}{2}\)-\(\frac{1}{2}\))+(\(\frac{1}{3}\)-\(\frac{1}{3}\))+(\(\frac{1}{4}\)-\(\frac{1}{4}\))+(\(\frac{1}{5}\)-\(\frac{1}{5}\))+(\(\frac{1}{6}\)-\(\frac{1}{6}\))+\(\frac{1}{7}\)
=5+\(\frac{1}{7}\)=\(\frac{36}{7}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(A=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(A=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2.\frac{3}{16}\)
\(A=\frac{3}{8}\)
A=2/20+2/30+2/42+...+2/240
=>A/2=1/20+1/30+1/42+...+1/240
=>A/2=1/(4*5)+1/(5*6)+1/(6*7)+...+1/(15*16)
=>A/2=1/4-1/5+1/5-1/5+1/6-1/7+...+1/15-1/16
=>A/2=1/4-1/16
=>A/2=3/16
=>A=3/8