Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)
\(a.\dfrac{2}{3}+\dfrac{4}{3}:\dfrac{-2}{3}=\dfrac{2}{3}+\left(-2\right)=\dfrac{-4}{3}\)
\(b.3\dfrac{4}{5}-\left(2\dfrac{1}{4}+1\dfrac{4}{5}\right)\\ =3\dfrac{4}{5}-2\dfrac{1}{4}-1\dfrac{4}{5}\\ =\left(3\dfrac{4}{5}-1\dfrac{4}{5}\right)-2\dfrac{1}{4}\\ =2-2\dfrac{1}{4}=\dfrac{1}{4}\)
\(c.\dfrac{-3}{5}.\dfrac{4}{7}+\dfrac{3}{7}.\dfrac{-3}{5}+\dfrac{3}{5}\\ =\dfrac{-3}{5}\left(\dfrac{4}{7}+\dfrac{3}{7}\right)+\dfrac{3}{5}\\ =\dfrac{-3}{5}+\dfrac{3}{5}=0\)
a) \(\dfrac{2}{5}+\dfrac{4}{3}:\dfrac{-2}{3}\)
\(=\dfrac{2}{5}+\dfrac{4}{3}.\dfrac{-3}{2}\)
\(=\dfrac{2}{5}+-2\)
\(=\dfrac{2}{5}+\dfrac{-10}{5}\)
\(=\dfrac{-8}{5}\)
a, - \(\dfrac{2}{5}\) + \(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)
\(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)+ \(\dfrac{2}{5}\)
\(\dfrac{4}{5}\).\(x\) = 1
\(x\) = \(\dfrac{5}{4}\)
b, - \(\dfrac{3}{7}\) - \(\dfrac{4}{7}\): \(x\) = \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{3}{7}\) - \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{29}{35}\)
\(x\) = \(\dfrac{4}{7}\): (- \(\dfrac{29}{35}\) )
\(x\) = - \(\dfrac{20}{29}\)
c, \(\dfrac{4}{7}\).\(x\) + \(\dfrac{2}{3}\) = - \(\dfrac{1}{5}\)
\(\dfrac{4}{7}\).\(x\) = -\(\dfrac{1}{5}\) - \(\dfrac{2}{3}\)
\(\dfrac{4}{7}\).\(x\) = - \(\dfrac{13}{15}\)
\(x\) = - \(\dfrac{13}{15}\): \(\dfrac{4}{7}\)
\(x\) = - \(\dfrac{91}{60}\)
a) Ta có: \(\left|5\cdot0.6+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=\left|3+\dfrac{2}{3}\right|-\dfrac{1}{3}\)
\(=3+\dfrac{2}{3}-\dfrac{1}{3}\)
\(=3+\dfrac{1}{3}=\dfrac{10}{3}\)
b) Ta có: \(\left(0.25-1\dfrac{1}{4}\right):5-\dfrac{1}{5}\cdot\left(-3\right)^2\)
\(=\left(\dfrac{1}{4}-\dfrac{5}{4}\right)\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{-4}{4}\cdot\dfrac{1}{5}-\dfrac{1}{5}\cdot9\)
\(=\dfrac{1}{5}\cdot\left(-1-9\right)\)
\(=-10\cdot\dfrac{1}{5}=-2\)
c) Ta có: \(\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}:\dfrac{5}{7}\)
\(=\dfrac{14}{17}\cdot\dfrac{7}{5}-\dfrac{-3}{17}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot\left(\dfrac{14}{17}+\dfrac{3}{17}\right)\)
\(=\dfrac{7}{5}\cdot1=\dfrac{7}{5}\)
d) Ta có: \(\dfrac{7}{16}+\dfrac{-9}{25}+\dfrac{9}{16}+\dfrac{-16}{25}\)
\(=\left(\dfrac{7}{16}+\dfrac{9}{16}\right)-\left(\dfrac{9}{25}+\dfrac{16}{25}\right)\)
\(=\dfrac{16}{16}-\dfrac{25}{25}\)
\(=1-1=0\)
e) Ta có: \(\dfrac{5}{6}+2\sqrt{\dfrac{4}{9}}\)
\(=\dfrac{5}{6}+2\cdot\dfrac{2}{3}\)
\(=\dfrac{5}{6}+\dfrac{4}{3}\)
\(=\dfrac{5}{6}+\dfrac{8}{6}=\dfrac{13}{6}\)
a) `1/3 - 1/4 : 2/5 = 1/3 - 5/8 = -7/24`
b) `6/7-(5/6+1/3)-(2/3+1/7) = 6/7-5/6-1/3-2/3-1/7`
`=(6/7-1/7)-(1/3+2/3)-5/6`
`=5/7-1-5/6`
`=-47/42`
c) `-5/9 . 2/5 + 4 5/9 + 5/9 . (-3/5)`
`= -5/9 . 2/5 + 4 + 5/9 + (-5/9) . 3/5`
`=-5/9 . (2/5 + 3/5-1) + 4`
`=-5/9 . 0 +4`
`=4`
d) 3 1/2 - (5 4/7 - 1 1/2) : 0,75`
`=7/2 - (39/7 - 3/2) : 3/4`
`= 7/2 - 57/14 : 3/4`
`=7/2 - 38/7`
`=-27/14`
-6/8=-3/2
2/7
Quy đồng được 12/20+-35/20=-23/20
Quy đồng được -10/15+3/15=-7/15
Quy đồng lên được -4/26+-5/26=-9/26
Quy đồng lên được: -12/21+7/21=-5/21 nhé
\(\dfrac{-1}{8}+\dfrac{-5}{8}=\dfrac{-6}{8}=\dfrac{-3}{4}\)
\(\dfrac{-3}{7}+\dfrac{5}{7}=\dfrac{2}{7}\)
\(\dfrac{3}{5}+\dfrac{-7}{4}=\dfrac{12}{20}+\dfrac{-35}{20}=\dfrac{-23}{20}\)
\(\dfrac{-2}{3}+\dfrac{1}{5}=\dfrac{-10}{15}+\dfrac{3}{15}=\dfrac{-13}{15}\)
\(\dfrac{2}{13}+\dfrac{-5}{26}=\dfrac{-4}{26}+\dfrac{-5}{26}=\dfrac{-9}{26}\)
\(\dfrac{-4}{7}+\dfrac{1}{3}=\dfrac{-12}{21}+\dfrac{7}{21}=\dfrac{-5}{21}\)
a)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)
b)
\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)
c)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)
d) tương tự câu 1
a) \(=\dfrac{157}{8}.\dfrac{12}{7}-\dfrac{61}{4}.\dfrac{12}{7}=\dfrac{12}{7}\left(\dfrac{157}{8}-\dfrac{61}{4}\right)=\dfrac{12}{7}.\dfrac{35}{8}=\dfrac{15}{2}\)
b) \(\dfrac{2}{5}.\dfrac{1}{3}-\dfrac{2}{15}\div\dfrac{1}{5}+\dfrac{3}{5}.\dfrac{1}{3}=\dfrac{1}{3}\left(\dfrac{2}{5}+\dfrac{3}{5}\right)-\dfrac{2}{15}.5=\dfrac{1}{3}.1-\dfrac{2}{3}=\dfrac{1}{3}-\dfrac{2}{3}=-\dfrac{1}{3}\)
c) \(=-\dfrac{80}{9}\)
1: Ta có: \(23\dfrac{1}{4}\cdot\dfrac{7}{5}-13\dfrac{1}{4}:\dfrac{5}{7}\)
\(=\dfrac{93}{4}\cdot\dfrac{7}{5}-\dfrac{53}{4}\cdot\dfrac{7}{5}\)
\(=\dfrac{7}{5}\cdot10=14\)
2: Ta có: \(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
\(=\dfrac{12+8-3}{12}\cdot\dfrac{1}{400}\)
\(=\dfrac{17}{12}\cdot\dfrac{1}{400}=\dfrac{17}{4800}\)
A = \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\)
7A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{7^{100}}\)
7A - A = (7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) +... + \(\dfrac{1}{7^{99}}\)) - (\(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) + ... + \(\dfrac{1}{7^{100}}\))
6A = 7 + \(\dfrac{1}{7}\) + \(\dfrac{1}{7^2}\) + ... + \(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) - ... - \(\dfrac{1}{7^{100}}\)
6A = (\(\dfrac{1}{7}\) - \(\dfrac{1}{7}\)) + (\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^2}\)) + (\(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^3}\)) +...+(\(\dfrac{1}{7^{99}}\) - \(\dfrac{1}{7^{99}}\))+ (7 - \(\dfrac{1}{7^{100}}\))
6A = 0 + 0 + ... + 0 + 7 - \(\dfrac{1}{7^{100}}\)
6A = 7 - \(\dfrac{1}{7^{100}}\)
A = (7 - \(\dfrac{1}{7^{100}}\)) : 6
A = \(\dfrac{7}{6}\) - \(\dfrac{1}{6.7^{100}}\)
G = \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{100}}\)
53G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) +... + \(\dfrac{3}{5^{99}}\)
125G - G = (75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\) + ... + \(\dfrac{3}{5^{99}}\)) - (\(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\)+\(\dfrac{3}{5^7}\)+...+\(\dfrac{3}{5^{100}}\))
124G = 75 + \(\dfrac{3}{5}\) + \(\dfrac{3}{5^4}\) + \(\dfrac{3}{5^7}\)+...+ \(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5}\) - \(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^7}\) - ... - \(\dfrac{3}{5^{100}}\)
124G = (75 - \(\dfrac{3}{5^{100}}\)) + (\(\dfrac{3}{5}\) - \(\dfrac{3}{5}\)) +(\(\dfrac{3}{5^4}\) - \(\dfrac{3}{5^4}\)) +...+ (\(\dfrac{3}{5^{99}}\) - \(\dfrac{3}{5^{99}}\))
124G = 75 - \(\dfrac{3}{5^{100}}\) + 0 + 0 + ... + 0
124G = 75 - \(\dfrac{3}{5^{100}}\)
G = (75 - \(\dfrac{3}{5^{100}}\)): 124
G = \(\dfrac{75}{124}\) - \(\dfrac{3}{124.5^{100}}\)