
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
b, \(4C=4^2+4^3+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(C=\frac{4^{n+1}-4}{3}\)
a) A = 1 + 2 + 22 + ... + 22010
=> 2A = 2 + 22 + 23 + ... + 22011
Lấy 2A - A = (2 + 22 + 23 + ... + 22011) - (1 + 2 + 22 + ... + 22010)
A = 2 + 22 + 23 + ... + 22011 - 1 - 2 - 22 - ... - 22010
= 22011 - 1
b) C = 4 + 42 + 43 +... + 4n
=> 4C = 42 + 43 + 44 + ... + 4n + 1
Lấy 4C - C = (42 + 43 + 44 + ... + 4n + 1) - ( 4 + 42 + 43 +... + 4n)
3C = 4n + 1 - 4
C =(4n + 1 - 4) : 3

a) 20+ 21+22+...+22010
A= 20+ 21+22+...+22010
2A= 2( 20+ 21+22+...+22010)
2A= 21+22+...+22010+22011
2A-A= (21+22+...+22010+22011) -(20+ 21+22+...+22010)
A= 22011-20
A= 22011-1
Vì 22011 > 22010 nên 22011 -1 > 22010-1
Vậy..
c)1030 = ( 103 )10 = 100010
= ( 210 )10 = 102410
Vì 1024 > 1000
=> 100010 < 102410 hay 1030 < 2100

a) A = 20 + 21 + 22 + .... + 22010
2A = 2(20 + 21 + 22 + .... + 22010)
2A = 21 + 22 + 23 + .... + 22011
A = (21 + 22 + 23 + .... + 22011) - (20 + 21 + 22 + .... + 22010)
A = 22011 - 20
A = 22011 - 1
b) B = 1 + 3 + 32 + .... + 3100
3B = 3(1 + 3 + 32 + .... + 3100)
3B = 3 + 32 + 33 + .... + 3101
2B = (3 + 32 + 33 + .... + 3101) - (1 + 3 + 32 + .... + 3100)
2B = 3101 - 1
B = (3101 - 1) : 2
c) C = 4 + 42 + 43 + .... + 4n
4C = 4(4 + 42 + 43 + .... + 4n)
4C = 42 + 43 + 44 .... + 4n + 1
3C = (42 + 43 + 44 .... + 4n + 1) - (4 + 42 + 43 + .... + 4n)
3C = 4n + 1 - 4
C = (4n + 1 - 4) : 3
d) D = 1 + 5 + 52 + .... + 52000
5D = 5(1 + 5 + 52 + .... + 52000)
5D = 5 + 52 + 53 + .... + 52001
4D = (5 + 52 + 53 + .... + 52001) - (1 + 5 + 52 + .... + 52000)
4D = 52001 - 1
4D = (52001 - 1) : 4

a)
\(S=1-2+3-4+...+2009-2010\)
\(S=\left(1-2\right)+\left(3-4\right)+...+\left(2009-2010\right)\)
\(S=\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
Có:
\(\dfrac{\left(2010-1\right):1+1}{2}=1005\) số (-1)
\(\Rightarrow S=1005.\left(-1\right)=-1005\)
b)
\(P=0-2+4-6+...+2010-2012\)
\(P=\left(0-2\right)+\left(4-6\right)+...+\left(2010-2012\right)\)
\(P=\left(-2\right)+\left(-2\right)+...+\left(-2\right)\)
Có:
\(\dfrac{\left(2010-0\right):2+1}{2}=503\) số (-2)
\(\Rightarrow P=503.\left(-2\right)=-1006\)
a)
S=1−2+3−4+...+2009−2010S=1−2+3−4+...+2009−2010
S=(1−2)+(3−4)+...+(2009−2010)S=(1−2)+(3−4)+...+(2009−2010)
S=(−1)+(−1)+...+(−1)S=(−1)+(−1)+...+(−1)
Có:
(2010−1):1+12=1005(2010−1):1+12=1005 số (-1)
⇒S=1005.(−1)=−1005⇒S=1005.(−1)=−1005
b)
P=0−2+4−6+...+2010−2012P=0−2+4−6+...+2010−2012
P=(0−2)+(4−6)+...+(2010−2012)P=(0−2)+(4−6)+...+(2010−2012)
P=(−2)+(−2)+...+(−2)P=(−2)+(−2)+...+(−2)
Có:
(2010−0):2+12=503(2010−0):2+12=503 số (-2)
⇒P=503.(−2)=−1006

bài kia thiếu oy : 0 < 1 nhưng 0 vẫn là số tự nhiên :v
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\)
+ vì các phân số trên đều là phân số dương nên tổng của chúng > 0
=> M > 0 (1)
+ \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
.....
\(\frac{1}{2010^2}< \frac{1}{2009\cdot2010}\)
nên \(M< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2009\cdot2010}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(\Rightarrow M< 1-\frac{1}{2010}\)
\(\Rightarrow M< 1\) (2)
\(\left(1\right)\left(2\right)\Rightarrow0< M< 1\)
=> M không phải là số tự nhiên
\(M=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2009.2009}+\frac{1}{2010.2010}\)
\(M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(M< 1-\frac{1}{2010}\)
=> M < 1(vì 1 trừu đi số nào cũng bé hơn nó)
=> M không phải là số tự nhiên
\(2A=2^1+2^2+...+2^{2011}\)
\(2A-A=2^{2011}-1\)
\(A=2^{2011}-1\)
A = 20 + 21 + ... + 22010
2A = 21 + 22 + ... 22011
2A - A = (21 + 22 + ... 22011) - (20 + 21 + ... + 22010)
A = 22011 - 1