Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 20 + 21 + 22 + .... + 22010
2A = 2(20 + 21 + 22 + .... + 22010)
2A = 21 + 22 + 23 + .... + 22011
A = (21 + 22 + 23 + .... + 22011) - (20 + 21 + 22 + .... + 22010)
A = 22011 - 20
A = 22011 - 1
b) B = 1 + 3 + 32 + .... + 3100
3B = 3(1 + 3 + 32 + .... + 3100)
3B = 3 + 32 + 33 + .... + 3101
2B = (3 + 32 + 33 + .... + 3101) - (1 + 3 + 32 + .... + 3100)
2B = 3101 - 1
B = (3101 - 1) : 2
c) C = 4 + 42 + 43 + .... + 4n
4C = 4(4 + 42 + 43 + .... + 4n)
4C = 42 + 43 + 44 .... + 4n + 1
3C = (42 + 43 + 44 .... + 4n + 1) - (4 + 42 + 43 + .... + 4n)
3C = 4n + 1 - 4
C = (4n + 1 - 4) : 3
d) D = 1 + 5 + 52 + .... + 52000
5D = 5(1 + 5 + 52 + .... + 52000)
5D = 5 + 52 + 53 + .... + 52001
4D = (5 + 52 + 53 + .... + 52001) - (1 + 5 + 52 + .... + 52000)
4D = 52001 - 1
4D = (52001 - 1) : 4
\(A=1+3+3^2+.....+3^{100}\)
\(3A=3+3^2+3^3+.....+3^{101}\)
\(3A-A=3+3^2+3^3+.....+3^{101}-\left(1+3+3^{^2}+....+3^{100}\right)\)
\(2A=3+3^2+3^3+....+3^{101}-1-3-3^2-.....-3^{100}\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
Bài 1
a)\(\left(-\dfrac{2}{3}\right).\dfrac{3}{11}-\left(\dfrac{4}{3}\right)^2.\dfrac{3}{11}\)
\(=\dfrac{3}{11}.\left[\left(-\dfrac{2}{3}\right)-\left(\dfrac{4}{3}\right)^2\right]\)
\(=\dfrac{3}{11}.\left[\left(-\dfrac{2}{3}\right)-\dfrac{4}{3}.\dfrac{4}{3}\right]\)
\(=\dfrac{3}{11}.\left[\left(-2\right).\dfrac{4}{3}\right]\)
\(=\dfrac{3}{11}.\left(-\dfrac{8}{3}\right)\)
\(=-\dfrac{24}{33}\)
Bài 1:
a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)
\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)
\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)
\(x=\dfrac{7}{20}:\dfrac{2}{5}\)
\(x=\dfrac{7}{8}\)
Vậy \(x=\dfrac{7}{8}\).
b) \(\dfrac{3}{5}=\dfrac{24}{x}\)
\(x=\dfrac{5\cdot24}{3}\)
\(x=40\)
Vậy \(x=40\).
c) \(\left(2x-3\right)^2=16\)
\(\left(2x-3\right)^2=4^2\)
\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)
\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)
Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).
Bài 2:
a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)
\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)
\(=\dfrac{5-88+5}{20}\)
\(=\dfrac{78}{20}=\dfrac{39}{10}\)
b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\)
Bài 3:
a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)
\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)
\(=\dfrac{-3}{7}\cdot1\)
\(=\dfrac{-3}{7}\)
b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)
\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)
\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)
\(=4-\dfrac{11}{4}\)
\(=\dfrac{16}{4}-\dfrac{11}{4}\)
\(\dfrac{5}{4}\)
Bài 4:
\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)
\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)
\(=2\cdot\dfrac{1}{15}\)
\(=\dfrac{2}{15}\)
Câu 1 :
Ta có :
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên :
\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)
Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có :
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)\(A=99-B>99-1=98\)
\(\Rightarrow\)\(A>98\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(98< A< 99\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
\(A=\left(2^2+2^3+2^4+2^5 \right).\left(3^2+3^3+3^4\right)\left(2^4-4^2\right)\)
\(=\left(2^2+2^3+2^4+2^5\right).\left(3^2+3^3+3^4\right).\left(16-16\right)\)
\(=0\)
Câu 1:
a,\(x=\dfrac{1}{4}+\dfrac{2}{13}\)
\(x=\dfrac{13}{52}+\dfrac{8}{52}=\dfrac{21}{52}\)
Câu 2:
a,\(\dfrac{-2}{5}+\dfrac{3}{-4}+\dfrac{6}{7}+\dfrac{3}{4}+\dfrac{2}{5}\)
\(=\left(\dfrac{-2}{5}+\dfrac{2}{5}\right)+\left(\dfrac{3}{-4}+\dfrac{3}{4}\right)+\dfrac{6}{7}\)
=\(0+0+\dfrac{6}{7}=\dfrac{6}{7}\)
b,\(\dfrac{7}{15}+\dfrac{4}{-9}+\dfrac{-2}{11}+\dfrac{8}{15}+\dfrac{-5}{9}\)
=\(\left(\dfrac{7}{15}+\dfrac{8}{15}\right)+\left(\dfrac{4}{-9}+\dfrac{-5}{9}\right)+\dfrac{-2}{11}\)
=\(\dfrac{15}{15}+\dfrac{-9}{9}+\dfrac{-2}{11}=1+\left(-1\right)+\dfrac{-2}{11}\)
=\(0+\dfrac{-2}{11}=\dfrac{-2}{11}\)
c, \(\dfrac{-5}{7}+\dfrac{5}{13}+\dfrac{-20}{41}+\dfrac{8}{13}+\dfrac{-21}{41}\)
=\(\left(\dfrac{5}{13}+\dfrac{8}{13}\right)+\left(\dfrac{-20}{41}+\dfrac{-21}{41}\right)+\dfrac{-5}{7}\)
=\(\dfrac{13}{13}+\dfrac{-41}{41}+\dfrac{-5}{7}=1+\left(-1\right)+\dfrac{-5}{7}\)
=\(0+\dfrac{-5}{7}=\dfrac{-5}{7}\)
a, \(2A=2+2^2+2^3+...+2^{2011}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)
\(A=2^{2011}-1\)
b, \(4C=4^2+4^3+...+4^{n+1}\)
\(4C-C=\left(4^2+4^3+...+4^{n+1}\right)-\left(4+4^2+...+4^n\right)\)
\(3C=4^{n+1}-4\)
\(C=\frac{4^{n+1}-4}{3}\)
a) A = 1 + 2 + 22 + ... + 22010
=> 2A = 2 + 22 + 23 + ... + 22011
Lấy 2A - A = (2 + 22 + 23 + ... + 22011) - (1 + 2 + 22 + ... + 22010)
A = 2 + 22 + 23 + ... + 22011 - 1 - 2 - 22 - ... - 22010
= 22011 - 1
b) C = 4 + 42 + 43 +... + 4n
=> 4C = 42 + 43 + 44 + ... + 4n + 1
Lấy 4C - C = (42 + 43 + 44 + ... + 4n + 1) - ( 4 + 42 + 43 +... + 4n)
3C = 4n + 1 - 4
C =(4n + 1 - 4) : 3