K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

http://123link.pw/EBI2

5 tháng 8 2018

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-3\)

\(A=\frac{3^{101}-3}{2}\)

Học tốt~

Ban ghi lai ro de dc k a 

17 tháng 9 2018

tính tổng:

S=(1+2.5+3.5...+101+201)+(12+22+32+...1002)

7 tháng 7 2016

                                       Đặt \(A=1+2+2^2+....+2^{99}+2^{100}\)

                                     \(2A=2+2^2+2^3+2^4+...+2^{100}+2^{101}\)

                                \(2A-A=\left(2+2^2+2^3+2^4+....+2^{100}+2^{101}\right)\)                                                                                                                     \(-\left(1+2+2^2+2^3+...+2^{99}+2^{100}\right)\)

                                    \(\Rightarrow A=2^{101}-1\)

                                      Ủng hộ mk nha!!!

7 tháng 7 2016

Tổng A có 100 số hạng . 

Nhóm 2 số hạng vào 1 nhóm thì vừa hết . Ta có :

          A = (2 + 2^2) + (2^3 + 2^4) + .....+ (2^99 + 2^100)

          A = (2 + 2^2) + 2^2(2 + 2^2) + ......2^98(2 + 2^2)

          A = 6 + 2^2 . 6 + .....+ 2^98 . 6

          A = 6(1 + 2^2 + ....+ 2^98)

5 tháng 11 2019

yêu cầu bạn ơi?

5 tháng 11 2019

\(G=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3G-G=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)\(-\frac{1}{3}-\frac{2}{3^2}-\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(2G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(3M-M=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)\(-1-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\)

\(2M=3-\frac{1}{3^{99}}\Leftrightarrow M=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow2G=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)

\(\Rightarrow G=\frac{3}{4}-\frac{1}{3^{99}.2^2}-\frac{100}{3^{100}.2}\)

22 tháng 1 2018

S=(-3)0+(-3)1+(-3)2+...+(-3)2014 ( có 2015 số hạng )

S=1+(-3)+3+...+3 ( có 2014 số 3 )

=>S=1+[(-3)+3]+[(-3)+3]+...+[(-3)+3]

S=1+0+0+...+0

S=1

25 tháng 6 2018

A = 1 + \(\frac{1}{2}\left(1+2\right)\)\(\frac{1}{3}\left(1+2+3\right)\)+ .... + \(\frac{1}{100}\left(1+2+3+...+100\right)\)

A = \(1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)

A = \(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

A = \(\frac{2+3+4+...+101}{2}\)

A = \(\frac{\left(101+2\right).100}{2}\div2\)

A  = \(5150\div2=2575\)

24 tháng 8 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10 

                              b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6 

                              c2 = a2 – b= 25 - 9 = 16  => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh    A1(-5; 0), A2(5; 0),  B1(0; -3),  B2(0; 3).

b)

4x2 + 9y2 = 1   <=>  x214x214 + y219y219 = 1

  a2=  1414  => a = 1212   => độ dài trục lớn 2a = 1

  b2 = 1919  => b = 1313 => độ dài trục nhỏ 2b = 2323

  c2 = a2 – b2   

= 1414 - 1919 =  536536    => c = √5656

 F1(-√5656 ; 0) và F2(√5656 ; 0)

  A1(-1212; 0), A2(1212; 0),  B1(0; -1313 ),  B2(0; 1313 ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> x29x29 + y24y24 = 1

Từ đây suy ra: 2a = 6.     2b = 4,    c = √5

=>  F1(-√5 ; 0) và F2(√5 ; 0)

 A1(-3; 0), A2(3; 0),  B1(0; -2),  B2(0; 2).

24 tháng 8 2017

\(T=-\frac{3}{2}\)\(+\)\(\left(\frac{3}{2}\right)^2\)\(-\left(\frac{3}{2}\right)^3\)\(+\left(\frac{3}{2}\right)^4\)\(-...+\left(\frac{3}{2}\right)^{20}\)

\(\frac{3}{2}T=\)\(-\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3-\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5-...+\left(\frac{3}{2}\right)^{21}\)

\(\frac{3}{2}T+T=\)\(-\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3-\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5-...+\left(\frac{3}{2}\right)^{21}\)\(+\left(\frac{-3}{2}\right)+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4-...+\left(\frac{3}{2}\right)^{20}\)

\(\frac{5}{2}T=\left(\frac{3}{2}\right)^{21}-\frac{3}{2}\)

\(T=\left\{\left(\frac{3}{2}\right)^{21}-\frac{3}{2}\right\}:\frac{5}{2}\)

Cậu dựa vào phần này nha ♥