K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2023

giải hộ vs đag cần gấp

 

\(A=2+2^2+2^3+...+2^{2018}\)

=>\(2A=2^2+2^3+2^4+...+2^{2019}\)

=>\(2A-A=2^2+2^3+...+2^{2019}-2-2^2-2^3-...-2^{2018}\)

=>\(A=2^{2019}-2\)

23 tháng 5 2021

\(B=\dfrac{1+2+2^2+.............................+2^{2008}}{1-2^{2009}}\)

Đặt \(N=1+2+2^2+..........+2^{2008}\)

\(\Rightarrow2N=2+2^2+2^3+.................+2^{2009}\)

2N-N=\(\left(2+2^2+2^3+............+2^{2009}\right)-\left(1+2+2^2+............+2^{2008}\right)\)

\(N=2^{2009}-1\)

Thay N vào B được

\(B=\dfrac{1-2^{2009}}{2^{2009}-1}=-1\)

Vậy .........................

Chúc bn học tốt

Giải:

\(B=\dfrac{1+2+2^2+2^3+...+2^{2018}}{1-2^{2009}}\) 

Đặt \(A=1+2+2^2+2^3+...+2^{2008}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2009}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\) 

\(A=2^{2009}-1\) 

\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=-1\)

3 tháng 1 2019

\(S=1+2+2^2+2^3+...+2^{2020}+2^{2021}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2020}+2^{2021}\right)\)

\(=3+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3+2^2.3+...+2^{2020}.3⋮3\)

     VẬY \(S⋮3\)

Trả lời :...........................................

SCSH: (2021 - 1) : 1 = 2020

Tổng: (2021 + 1) : 2 = 1011

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

22 tháng 12 2023

\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)

Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)

\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1

hay số dư của phép chia \(A\) cho \(3\) là \(1\).

22 tháng 12 2023

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

26 tháng 9 2017

a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10

Gọi biểu thức trên là A , ta có :

A = 2^1+2^2 9+2^3+ 2^4 +...+2^10

2A=     2^2 +2^3+2^4+...+2^10+2^11

2A-A=2^11-2^1

A=2^10

b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết

5A = 5^2+5^3+...+5^25 5^26

5A-A=5^26 - 5^1

A=5^25

30 tháng 9 2017

xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót

18 tháng 9 2023

B = 22021  - 22020 - 22019 -...- 2 -1

B = 22021 - (22020 + 22019 +...+2 +1)

Đặt         C =              22020 + 22019 +...+ 2 + 1

             2C = 22021 + 22020 + 22019+....+ 2 + 1

       2C - C = 22021 - 1

               C = 22021 - 1

B = 22021 - (22021 -1)

B = 22021 - 22021 + 1

B  = 1

5 tháng 8 2018

http://123link.pw/j6KCoe

15 tháng 10 2023

   599 - 42 x 597 - 32 x 59

= 597.(52 - 42) - 32.59

= 597.(25 - 16) - 32.59

= 597.9 - 9.59

11 tháng 6 2019

A = 1 + 2 + 22 + 23 + ... + 22019

2A = 2(1 + 2 + 22 + ... + 22019)

2A = 2 + 22 + 23 + ... + 22020

=> 2A - A = (2 + 22 + 23 + ... + 22020) - (1 + 2 + 22 + .. +22019)

=> A = 22020 - 1

B - A = 22020 - (22020 - 1) = 1

11 tháng 6 2019

\(A=1+2+2^2+2^3+...+2^{2019}\)

\(2A=2\left(1+2+2^2+2^3+...+2^{2019}\right)\)

\(2A=2+2^2+2^3+2^4+...+2^{2020}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2020}\right)-\left(1+2+2^2+2^3+...+2^{2019}\right)\)

\(A=2^{2020}-1\)

=> B - A =  \(2^{2020}-\left(2^{2020}-1\right)=\text{ấn máy tính đel ra :))))}\)

25 tháng 9 2019

a) 12.52                           b)704:82                         c) 22 . 72                              d) ( 96 : 24 )3

=> 12 . 25                        => 704 : 64                     => 4 . 49                        =>       43

=> 300                             => 11                              => 196                            =>      16

                                                        ~Học tốt~