\(1\frac{1}{2}+1\frac{1}{3}+1\frac{1}{4}+...+1\frac{1}{2014}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

de thui

nhung ma bai nay dai qua

luc ranh mk lam cho

nha@@@@

15 tháng 10 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)

\(\Rightarrow A=\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+...+\frac{1}{19}.\frac{1}{20}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{20}=\frac{19}{20}\)

8 tháng 5 2017

Sao đề lạ dữ vậy bạn kiểm tra lại xem cái phần B ấy

8 tháng 5 2017

Đúng rồi bạn ạ

31 tháng 7 2016

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2015}\)

\(=\frac{1}{\left(1+0\right).2:2}+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2015.2016}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=2.\left(1-\frac{1}{2016}\right)\)

\(=2.\frac{2015}{2016}=\frac{2015}{1008}\)

10 tháng 4 2017

1-\(\frac{1}{2}\)+   \(\frac{1}{3}\) -  \(\frac{1}{4}\)+...+\(\frac{1}{2013}\)-  \(\frac{1}{2014}\)
=(1+\(\frac{1}{3}\)+...+\(\frac{1}{2013}\)) - (\(\frac{1}{2}\)+  \(\frac{1}{4}\) + ...+ \(\frac{1}{2014}\))
=(1+\(\frac{1}{2}\)+  \(\frac{1}{3}\)+  \(\frac{1}{4}\)+...+  \(\frac{1}{2013}\)+  \(\frac{1}{2014}\))-2.(\(\frac{1}{2}\)+  \(\frac{1}{4}\)+...+\(\frac{1}{2014}\))
=1+\(\frac{1}{2}\)+  \(\frac{1}{3}\)+  \(\frac{1}{4}\)+  \(\frac{1}{2013}\)+  \(\frac{1}{2014}\)- 1-\(\frac{1}{2}\)-...-\(\frac{1}{1007}\)
=(1+\(\frac{1}{2}\)+  \(\frac{1}{3}\)+  \(\frac{1}{4}\)+...+\(\frac{1}{1007}\))+\(\frac{1}{1008}\)+  \(\frac{1}{1009}\)+...+\(\frac{1}{2013}\)+  \(\frac{1}{2014}\)-(1+\(\frac{1}{2}\)+...+\(\frac{1}{1007}\))
=\(\frac{1}{1008}\)+  \(\frac{1}{1009}\)+...+\(\frac{1}{2013}\)+  \(\frac{1}{2014}\).

10 tháng 4 2017

mình chưa hiểu lắm

tại sao nhân 2 lên và còn 1 - \(\frac{1}{2}\)- ... - \(\frac{1}{1007}\)

1007 ở đâu?????

12 tháng 4 2016

   1/2+1/4+1/6+1/8+...+1/126

=1/2-1/126

=62/63

24 tháng 7 2017

Ta có: \(\frac{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...\frac{1}{2014}+2014}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=

\(\frac{\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{1}{2014}+1\right)+1+2014}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=

\(\frac{\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+2015}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=\(\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+1\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2015

12 tháng 2 2017

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2015}\right)\)

\(=\left(\frac{2-1}{2}\right)\left(\frac{3-1}{3}\right)\left(\frac{4-1}{4}\right)....\left(\frac{2015-1}{2015}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2013}{2014}.\frac{2014}{2015}\)

\(=\frac{1}{2015}\)

12 tháng 2 2017

Kết quả bằng 1/2015 nhé.