\(1^2+2^2+3^2+...+2011^2\) tinh theo kiểu macma

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

\(A=2+2^2+2^3+...+2^{2011}\)

\(2A=2^2+2^3+2^4+...+2^{2012}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2012}\right)-\left(2+2^2+2^3+...+2^{2011}\right)\)

\(A=2^{2012}-2\)

24 tháng 9 2016

Ta có A=\(2+2^2+2^3+...+2^{2011}\)

=>2A=\(2^2+2^3+2^4+...+2^{2012}\)

=>2A-A=\(\left(2^2+2^3+2^4+...+2^{2012}\right)-\left(2+2^2+2^3+...+2^{2011}\right)\)

           =\(-2+2^2-2^2+2^3-2^3+2^4-2^4+...+2^{2011}-2^{2011}+2^{2012}\)

           =\(2^{2012}-2\)

Vậy A=\(2^{2012}-2\)

24 tháng 9 2016

cảm ơn ban nhiều nha

22 tháng 10 2016

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\left(1\right)\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2010.2011}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}< 1\left(2\right)\)

Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)

Đpcm

 

17 tháng 10 2018

\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)

\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)

\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)

\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)

Vậy \(\frac{B}{A}=2012\)

Chúc bạn học tốt ~ 

17 tháng 10 2018

cảm ơn bạn

14 tháng 8 2017

a, \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}{\left(\frac{2011}{1}+1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)+1}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}}\)

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2012\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)}=\frac{1}{2012}\)

b, \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+1}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{\frac{2017}{1}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}\)

\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}=\frac{1}{2017}\)

26 tháng 2 2018

Ta có : 

\(S=2^{2013}-2^{2012}-2^{2011}-...-2-1\)

\(S=2^{2013}-\left(2^{2012}+2^{2011}+...+2+1\right)\)

Đặt \(A=1+2+...+2^{2011}+2^{2012}\)

\(2A=2+2^2+...+2^{2012}+2^{2013}\)

\(2A-A=\left(2+2^2+...+2^{2012}+2^{2013}\right)-\left(1+2+...+2^{2011}+2^{2012}\right)\)

\(A=2^{2013}-1\)

\(\Rightarrow\)\(S=2^{2013}-\left(2^{2012}-2^{2011}-...-2-1\right)=2^{2013}-A=2^{2013}-\left(2^{2013}-1\right)=2^{2013}-2^{2013}+1=1\)

Vậy \(S=1\)