Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(u=\ln x\rightarrow du=\frac{dx}{x},dv=\int_1^2\frac{dx}{x^3}\rightarrow v=-\frac{1}{2x^2}\)
Do vậy : \(I=-\frac{1}{2x^2}\ln x|^2_1+\frac{1}{2}\int\limits^2_1\frac{dx}{x^3}=-\frac{\ln2}{8}-\frac{1}{4x^2}|^2_1=\frac{3-2\ln2}{16}\)
1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)
2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)
\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)
3/
\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)
4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)
2a. Đề sai, nhìn biểu thức \(\dfrac{f'\left(x\right)}{f'\left(x\right)}dx\) là thấy
2b. Đồ thị hàm số không cắt Ox trên \(\left(0;1\right)\) nên diện tích cần tìm:
\(S=\int\limits^1_0\left(x^4-5x^2+4\right)dx=\dfrac{38}{15}\)
3a. Phương trình (P) theo đoạn chắn:
\(\dfrac{x}{4}+\dfrac{y}{-1}+\dfrac{z}{-2}=1\)
3b. Câu này đề sai, đề cho mặt phẳng (Q) rồi thì sao lại còn viết pt mặt phẳng (Q) nữa?
sorry thầy em xin sửa lại câu 3 b là
b) trong không gian Oxyz cho mặt phẳng (Q): 3x-y-2z+1=0.Viết phương trình mặt phẳng (P) song song với mặt phẳng (Q) và đi qua điểm M(0;0;1)
Ta có :\(I=\int\limits^2_0\frac{x^2x^3}{\sqrt{x^3+1}}dx\)
Đặt \(t=\sqrt{x^3+1}\) khi đó với x=0 thì t=1,x=2 thì t=3
và \(dt=\frac{3x^2}{2\sqrt{x^3+1}}dx\Rightarrow\frac{x^2}{\sqrt{x^3+1}}dx=\frac{2}{3}dt,x^3=t^2-1\)
Suy ra \(I=\frac{2}{3}\int\limits^3_1\left(t^2-1\right)dt=\frac{2}{3}\left(\frac{1}{3}t^2-t\right)|^3_1=\frac{2}{3}\left(\frac{26}{3}-2\right)=\frac{40}{9}\)
Vậy \(I=\int\limits^2_0\frac{x^5}{\sqrt{x^3+1}}dx=\frac{40}{9}\)
\(\int\limits^2_1\frac{\ln\left(x+1\right)}{x^2}dx=-\frac{\ln\left(x+1\right)}{x^2}+\int\limits^2_1\frac{1}{x\left(x+1\right)}dx=\ln2-\frac{\ln3}{2}+\int\limits^2_1\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)
\(=\ln2-\frac{\ln3}{2}+\ln\left(\frac{x}{x+1}\right)|^2_1=\ln2-\frac{\ln3}{2}-\ln3=\frac{\ln2-3\ln3}{2}\)
Ta có \(I=\int\limits^2_1\frac{1+x^2e^x}{x}dx=\int\limits^2_1\left(\frac{1}{x}+xe^x\right)dx=\int\limits^2_1\frac{dx}{x}+\int\limits^2_1xe^xdx\)
Tính \(\int\limits^2_1\frac{dx}{x}=\ln\left|x\right||^2_1=\ln2\)
Đặt \(u=x\Rightarrow du=dx,dv=e^xdx\) chọn \(v=e^x\)
Suy ra : \(\int\limits^2_1xe^xdx=xe^x|^2_1-e^x|^2_1=e^2\)
Vậy \(I=\ln2+e^2\)